ﻻ يوجد ملخص باللغة العربية
We study how a system of one-dimensional spin-1/2 fermions at temperatures well below the Fermi energy approaches thermal equilibrium. The interactions between fermions are assumed to be weak and are accounted for within the perturbation theory. In the absence of an external magnetic field, spin degeneracy strongly affects relaxation of the Fermi gas. For sufficiently short-range interactions, the rate of relaxation scales linearly with temperature. Focusing on the case of the system near equilibrium, we linearize the collision integral and find exact solution of the resulting relaxation problem. We discuss the application of our results to the evaluation of the transport coefficients of the one-dimensional Fermi gas.
We study heat transport in a gas of one-dimensional fermions in the presence of a small temperature gradient. At temperatures well below the Fermi energy there are two types of relaxation processes in this system, with dramatically different relaxati
We study the viscous properties of a system of weakly interacting spin-$frac{1}{2}$ fermions in one dimension. Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity of this system at low temperat
We consider a one-dimensional gas of spin-1/2 fermions interacting through $delta$-function repulsive potential of an arbitrary strength. For the case of all fermions but one having spin up, we calculate time-dependent two-point correlation function
Donors in silicon can now be positioned with an accuracy of about one lattice constant, making it possible in principle to form donor arrays for quantum computation or quantum simulation applications. However the multi-valley character of the silicon
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F