ترغب بنشر مسار تعليمي؟ اضغط هنا

A New One-Point Residual-Feedback Oracle For Black-Box Learning and Control

133   0   0.0 ( 0 )
 نشر من قبل Yan Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Zeroth-order optimization (ZO) algorithms have been recently used to solve black-box or simulation-based learning and control problems, where the gradient of the objective function cannot be easily computed but can be approximated using the objective function values. Many existing ZO algorithms adopt two-point feedback schemes due to their fast convergence rate compared to one-point feedback schemes. However, two-point schemes require two evaluations of the objective function at each iteration, which can be impractical in applications where the data are not all available a priori, e.g., in online optimization. In this paper, we propose a novel one-point feedback scheme that queries the function value once at each iteration and estimates the gradient using the residual between two consecutive points. When optimizing a deterministic Lipschitz function, we show that the query complexity of ZO with the proposed one-point residual feedback matches that of ZO with the existing two-point schemes. Moreover, the query complexity of the proposed algorithm can be improved when the objective function has Lipschitz gradient. Then, for stochastic bandit optimization problems where only noisy objective function values are given, we show that ZO with one-point residual feedback achieves the same convergence rate as that of two-point scheme with uncontrollable data samples. We demonstrate the effectiveness of the proposed one-point residual feedback via extensive numerical experiments.

قيم البحث

اقرأ أيضاً

We suggest a general oracle-based framework that captures different parallel stochastic optimization settings described by a dependency graph, and derive generic lower bounds in terms of this graph. We then use the framework and derive lower bounds f or several specific parallel optimization settings, including delayed updates and parallel processing with intermittent communication. We highlight gaps between lower and upper bounds on the oracle complexity, and cases where the natural algorithms are not known to be optimal.
Finite-sum optimization problems are ubiquitous in machine learning, and are commonly solved using first-order methods which rely on gradient computations. Recently, there has been growing interest in emph{second-order} methods, which rely on both gr adients and Hessians. In principle, second-order methods can require much fewer iterations than first-order methods, and hold the promise for more efficient algorithms. Although computing and manipulating Hessians is prohibitive for high-dimensional problems in general, the Hessians of individual functions in finite-sum problems can often be efficiently computed, e.g. because they possess a low-rank structure. Can second-order information indeed be used to solve such problems more efficiently? In this paper, we provide evidence that the answer -- perhaps surprisingly -- is negative, at least in terms of worst-case guarantees. However, we also discuss what additional assumptions and algorithmic approaches might potentially circumvent this negative result.
391 - Ilya Loshchilov 2013
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objecti ve function needed to approximate the global optimum. This weakness is commonly addressed through surrogate optimization, learning an estimate of the objective function a.k.a. surrogate model, and replacing most evaluations of the true objective function with the (inexpensive) evaluation of the surrogate model. This paper presents a principled control of the learning schedule (when to relearn the surrogate model), based on the Kullback-Leibler divergence of the current search distribution and the training distribution of the former surrogate model. The experimental validation of the proposed approach shows significant performance gains on a comprehensive set of ill-conditioned benchmark problems, compared to the best state of the art including the quasi-Newton high-precision BFGS method.
In this paper, we focus on solving a class of constrained non-convex non-concave saddle point problems in a decentralized manner by a group of nodes in a network. Specifically, we assume that each node has access to a summand of a global objective fu nction and nodes are allowed to exchange information only with their neighboring nodes. We propose a decentralized variant of the proximal point method for solving this problem. We show that when the objective function is $rho$-weakly convex-weakly concave the iterates converge to approximate stationarity with a rate of $mathcal{O}(1/sqrt{T})$ where the approximation error depends linearly on $sqrt{rho}$. We further show that when the objective function satisfies the Minty VI condition (which generalizes the convex-concave case) we obtain convergence to stationarity with a rate of $mathcal{O}(1/sqrt{T})$. To the best of our knowledge, our proposed method is the first decentralized algorithm with theoretical guarantees for solving a non-convex non-concave decentralized saddle point problem. Our numerical results for training a general adversarial network (GAN) in a decentralized manner match our theoretical guarantees.
103 - Yan Zhang , Yi Zhou , Kaiyi Ji 2020
Zeroth-order optimization (ZO) typically relies on two-point feedback to estimate the unknown gradient of the objective function. Nevertheless, two-point feedback can not be used for online optimization of time-varying objective functions, where only a single query of the function value is possible at each time step. In this work, we propose a new one-point feedback method for online optimization that estimates the objective function gradient using the residual between two feedback points at consecutive time instants. Moreover, we develop regret bounds for ZO with residual feedback for both convex and nonconvex online optimization problems. Specifically, for both deterministic and stochastic problems and for both Lipschitz and smooth objective functions, we show that using residual feedback can produce gradient estimates with much smaller variance compared to conventional one-point feedback methods. As a result, our regret bounds are much tighter compared to existing regret bounds for ZO with conventional one-point feedback, which suggests that ZO with residual feedback can better track the optimizer of online optimization problems. Additionally, our regret bounds rely on weaker assumptions than those used in conventional one-point feedback methods. Numerical experiments show that ZO with residual feedback significantly outperforms existing one-point feedback methods also in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا