ﻻ يوجد ملخص باللغة العربية
Zeroth-order optimization (ZO) algorithms have been recently used to solve black-box or simulation-based learning and control problems, where the gradient of the objective function cannot be easily computed but can be approximated using the objective function values. Many existing ZO algorithms adopt two-point feedback schemes due to their fast convergence rate compared to one-point feedback schemes. However, two-point schemes require two evaluations of the objective function at each iteration, which can be impractical in applications where the data are not all available a priori, e.g., in online optimization. In this paper, we propose a novel one-point feedback scheme that queries the function value once at each iteration and estimates the gradient using the residual between two consecutive points. When optimizing a deterministic Lipschitz function, we show that the query complexity of ZO with the proposed one-point residual feedback matches that of ZO with the existing two-point schemes. Moreover, the query complexity of the proposed algorithm can be improved when the objective function has Lipschitz gradient. Then, for stochastic bandit optimization problems where only noisy objective function values are given, we show that ZO with one-point residual feedback achieves the same convergence rate as that of two-point scheme with uncontrollable data samples. We demonstrate the effectiveness of the proposed one-point residual feedback via extensive numerical experiments.
We suggest a general oracle-based framework that captures different parallel stochastic optimization settings described by a dependency graph, and derive generic lower bounds in terms of this graph. We then use the framework and derive lower bounds f
Finite-sum optimization problems are ubiquitous in machine learning, and are commonly solved using first-order methods which rely on gradient computations. Recently, there has been growing interest in emph{second-order} methods, which rely on both gr
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objecti
In this paper, we focus on solving a class of constrained non-convex non-concave saddle point problems in a decentralized manner by a group of nodes in a network. Specifically, we assume that each node has access to a summand of a global objective fu
Zeroth-order optimization (ZO) typically relies on two-point feedback to estimate the unknown gradient of the objective function. Nevertheless, two-point feedback can not be used for online optimization of time-varying objective functions, where only