ترغب بنشر مسار تعليمي؟ اضغط هنا

A pair of homotopy-theoretic version of TQFTs induced by a Brown functor

80   0   0.0 ( 0 )
 نشر من قبل Minkyu Kim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Minkyu Kim




اسأل ChatGPT حول البحث

The purpose of this paper is to study some obstruction classes induced by a construction of a homotopy-theoretic version of projective TQFT (projective HTQFT for short). A projective HTQFT is given by a symmetric monoidal projective functor whose domain is the cospan category of pointed finite CW-spaces instead of a cobordism category. We construct a pair of projective HTQFTs starting from a $mathsf{Hopf}^mathsf{bc}_k$-valued Brown functor where $mathsf{Hopf}^mathsf{bc}_k$ is the category of bicommutative Hopf algebras over a field $k$ : the cospanical path-integral and the spanical path-integral of the Brown functor. They induce obstruction classes by an analogue of the second cohomology class associated with projective representations. In this paper, we derive some formulae of those obstruction classes. We apply the formulae to prove that the dimension reduction of the cospanical and spanical path-integrals are lifted to HTQFTs. In another application, we reproduce the Dijkgraaf-Witten TQFT and the Turaev-Viro TQFT from an ordinary $mathsf{Hopf}^mathsf{bc}_k$-valued homology theory.



قيم البحث

اقرأ أيضاً

81 - Minkyu Kim 2020
Let $mathcal{A}$ be a small abelian category. The purpose of this paper is to introduce and study a category $overline{mathcal{A}}$ which implicitly appears in construction of some TQFTs where $overline{mathcal{A}}$ is determined by $mathcal{A}$. If $mathcal{A}$ is the category of abelian groups, then the TQFTs obtained by Dijkgraaf-Witten theory of abelian groups or Turaev-Viro theory of bicommutative Hopf algebras factor through $overline{mathcal{A}}$ up to a scaling. In this paper, we go further by giving a sufficient condition for an $mathcal{A}$-valued Brown functor to extend to a homotopy-theoretic analogue of $overline{mathcal{A}}$-valued TQFT for arbitrary $mathcal{A}$. The results of this paper and our subsequent paper reproduces TQFTs obtained by DW theory and TV theory.
We classify a number of symmetry protected phases using Freed-Hopkins homotopy theoretic classification. Along the way we compute the low-dimensional homotopy groups of a number of novel cobordism spectra.
There exists a canonical functor from the category of fibrant objects of a model category modulo cylinder homotopy to its homotopy category. We show that this functor is faithful under certain conditions, but not in general.
90 - Daniel A. Ramras 2018
Let $M$ be a topological monoid with homotopy group completion $Omega BM$. Under a strong homotopy commutativity hypothesis on $M$, we show that $pi_k (Omega BM)$ is the quotient of the monoid of free homotopy classes $[S^k, M]$ by its submonoid of n ullhomotopic maps. We give two applications. First, this result gives a concrete description of the Lawson homology of a complex projective variety in terms of point-wise addition of spherical families of effective algebraic cycles. Second, we apply this result to monoids built from the unitary, or general linear, representation spaces of discrete groups, leading to results about lifting continuous families of characters to continuous families of representations.
In this paper, Wielandts inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bou nd, dichotomy theorems for the zero--error capacity of quantum channels and for the Matrix Product State (MPS) dimension of ground states of frustration-free Hamiltonians are derived. The obtained inequalities also imply new bounds on the required interaction-range of Hamiltonians with unique MPS ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا