ﻻ يوجد ملخص باللغة العربية
Let $mathcal{A}$ be a small abelian category. The purpose of this paper is to introduce and study a category $overline{mathcal{A}}$ which implicitly appears in construction of some TQFTs where $overline{mathcal{A}}$ is determined by $mathcal{A}$. If $mathcal{A}$ is the category of abelian groups, then the TQFTs obtained by Dijkgraaf-Witten theory of abelian groups or Turaev-Viro theory of bicommutative Hopf algebras factor through $overline{mathcal{A}}$ up to a scaling. In this paper, we go further by giving a sufficient condition for an $mathcal{A}$-valued Brown functor to extend to a homotopy-theoretic analogue of $overline{mathcal{A}}$-valued TQFT for arbitrary $mathcal{A}$. The results of this paper and our subsequent paper reproduces TQFTs obtained by DW theory and TV theory.
In this paper we present background results in enriched category theory and enriched model category theory necessary for developing model categories of enriched functors suitable for doing functor calculus.
There exists a canonical functor from the category of fibrant objects of a model category modulo cylinder homotopy to its homotopy category. We show that this functor is faithful under certain conditions, but not in general.
We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an
The purpose of this paper is to study some obstruction classes induced by a construction of a homotopy-theoretic version of projective TQFT (projective HTQFT for short). A projective HTQFT is given by a symmetric monoidal projective functor whose dom
Magnitude is a numerical invariant of enriched categories, including in particular metric spaces as $[0,infty)$-enriched categories. We show that in many cases magnitude can be categorified to a homology theory for enriched categories, which we call