ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

191   0   0.0 ( 0 )
 نشر من قبل Mathilde Caron
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or views) of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a swapped prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements much. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.



قيم البحث

اقرأ أيضاً

This paper proposes a novel method of learning by predicting view assignments with support samples (PAWS). The method trains a model to minimize a consistency loss, which ensures that different views of the same unlabeled instance are assigned simila r pseudo-labels. The pseudo-labels are generated non-parametrically, by comparing the representations of the image views to those of a set of randomly sampled labeled images. The distance between the view representations and labeled representations is used to provide a weighting over class labels, which we interpret as a soft pseudo-label. By non-parametrically incorporating labeled samples in this way, PAWS extends the distance-metric loss used in self-supervised methods such as BYOL and SwAV to the semi-supervised setting. Despite the simplicity of the approach, PAWS outperforms other semi-supervised methods across architectures, setting a new state-of-the-art for a ResNet-50 on ImageNet trained with either 10% or 1% of the labels, reaching 75.5% and 66.5% top-1 respectively. PAWS requires 4x to 12x less training than the previous best methods.
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we pre sent DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, k-means, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.
Thinking in pictures, [1] i.e., spatial-temporal reasoning, effortless and instantaneous for humans, is believed to be a significant ability to perform logical induction and a crucial factor in the intellectual history of technology development. Mode rn Artificial Intelligence (AI), fueled by massive datasets, deeper models, and mighty computation, has come to a stage where (super-)human-level performances are observed in certain specific tasks. However, current AIs ability in thinking in pictures is still far lacking behind. In this work, we study how to improve machines reasoning ability on one challenging task of this kind: Ravens Progressive Matrices (RPM). Specifically, we borrow the very idea of contrast effects from the field of psychology, cognition, and education to design and train a permutation-invariant model. Inspired by cognitive studies, we equip our model with a simple inference module that is jointly trained with the perception backbone. Combining all the elements, we propose the Contrastive Perceptual Inference network (CoPINet) and empirically demonstrate that CoPINet sets the new state-of-the-art for permutation-invariant models on two major datasets. We conclude that spatial-temporal reasoning depends on envisaging the possibilities consistent with the relations between objects and can be solved from pixel-level inputs.
Inspired by the fact that human eyes continue to develop tracking ability in early and middle childhood, we propose to use tracking as a proxy task for a computer vision system to learn the visual representations. Modelled on the Catch game played by the children, we design a Catch-the-Patch (CtP) game for a 3D-CNN model to learn visual representations that would help with video-related tasks. In the proposed pretraining framework, we cut an image patch from a given video and let it scale and move according to a pre-set trajectory. The proxy task is to estimate the position and size of the image patch in a sequence of video frames, given only the target bounding box in the first frame. We discover that using multiple image patches simultaneously brings clear benefits. We further increase the difficulty of the game by randomly making patches invisible. Extensive experiments on mainstream benchmarks demonstrate the superior performance of CtP against other video pretraining methods. In addition, CtP-pretrained features are less sensitive to domain gaps than those trained by a supervised action recognition task. When both trained on Kinetics-400, we are pleasantly surprised to find that CtP-pretrained representation achieves much higher action classification accuracy than its fully supervised counterpart on Something-Something dataset. Code is available online: github.com/microsoft/CtP.
170 - Qi Qian , Yuanhong Xu , Juhua Hu 2021
Cluster discrimination is an effective pretext task for unsupervised representation learning, which often consists of two phases: clustering and discrimination. Clustering is to assign each instance a pseudo label that will be used to learn represent ations in discrimination. The main challenge resides in clustering since many prevalent clustering methods (e.g., k-means) have to run in a batch mode that goes multiple iterations over the whole data. Recently, a balanced online clustering method, i.e., SwAV, is proposed for representation learning. However, the assignment is optimized within only a small subset of data, which can be suboptimal. To address these challenges, we first investigate the objective of clustering-based representation learning from the perspective of distance metric learning. Based on this, we propose a novel clustering-based pretext task with online textbf{Co}nstrained textbf{K}-mtextbf{e}ans (textbf{CoKe}) to learn representations and relations between instances simultaneously. Compared with the balanced clustering that each cluster has exactly the same size, we only constrain the minimum size of clusters to flexibly capture the inherent data structure. More importantly, our online assignment method has a theoretical guarantee to approach the global optimum. Finally, two variance reduction strategies are proposed to make the clustering robust for different augmentations. Without keeping representations of instances, the data is accessed in an online mode in CoKe while a single view of instances at each iteration is sufficient to demonstrate a better performance than contrastive learning methods relying on two views. Extensive experiments on ImageNet verify the efficacy of our proposal. Code will be released.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا