ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Clustering for Unsupervised Learning of Visual Features

164   0   0.0 ( 0 )
 نشر من قبل Mathilde Caron
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, k-means, and uses the subsequent assignments as supervision to update the weights of the network. We apply DeepCluster to the unsupervised training of convolutional neural networks on large datasets like ImageNet and YFCC100M. The resulting model outperforms the current state of the art by a significant margin on all the standard benchmarks.

قيم البحث

اقرأ أيضاً

Exemplar learning of visual similarities in an unsupervised manner is a problem of paramount importance to Computer Vision. In this context, however, the recent breakthrough in deep learning could not yet unfold its full potential. With only a single positive sample, a great imbalance between one positive and many negatives, and unreliable relationships between most samples, training of Convolutional Neural networks is impaired. In this paper we use weak estimates of local similarities and propose a single optimization problem to extract batches of samples with mutually consistent relations. Conflicting relations are distributed over different batches and similar samples are grouped into compact groups. Learning visual similarities is then framed as a sequence of categorization tasks. The CNN then consolidates transitivity relations within and between groups and learns a single representation for all samples without the need for labels. The proposed unsupervised approach has shown competitive performance on detailed posture analysis and object classification.
Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation learning. However, the training schedule alternating between feature clustering and network parameters update leads to unstable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC) that performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster centroids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dynamic memory modules, i.e., samples memory to store samples labels and features, and centroids memory for centroids evolution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment. The process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the performance effectively. Code: https://github.com/open-mmlab/OpenSelfSup.
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of exp licit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or views) of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a swapped prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements much. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniq ues to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS: a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the raw input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.
Sharing images online poses security threats to a wide range of users due to the unawareness of privacy information. Deep features have been demonstrated to be a powerful representation for images. However, deep features usually suffer from the issue s of a large size and requiring a huge amount of data for fine-tuning. In contrast to normal images (e.g., scene images), privacy images are often limited because of sensitive information. In this paper, we propose a novel approach that can work on limited data and generate deep features of smaller size. For training images, we first extract the initial deep features from the pre-trained model and then employ the K-means clustering algorithm to learn the centroids of these initial deep features. We use the learned centroids from training features to extract the final features for each testing image and encode our final features with the triangle encoding. To improve the discriminability of the features, we further perform the fusion of two proposed unsupervised deep features obtained from different layers. Experimental results show that the proposed features outperform state-of-the-art deep features, in terms of both classification accuracy and testing time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا