ﻻ يوجد ملخص باللغة العربية
The susceptibility-based positive contrast MR technique was applied to estimate arbitrary magnetic susceptibility distributions of the metallic devices using a kernel deconvolution algorithm with a regularized L-1 minimization.Previously, the first-order primal-dual (PD) algorithm could provide a faster reconstruction time to solve the L-1 minimization, compared with other methods. Here, we propose to accelerate the PD algorithm of the positive contrast image using the multi-core multi-thread feature of graphics processor units (GPUs). The some experimental results showed that the GPU-based PD algorithm could achieve comparable accuracy of the metallic interventional devices in positive contrast imaging with less computational time. And the GPU-based PD approach was 4~15 times faster than the previous CPU-based scheme.
Magnetic resonance-electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available, however all
Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach
In this work, we propose a free-breathing magnetic resonance fingerprinting method that can be used to obtain $B_1^+$-robust quantitative maps of the abdomen in a clinically acceptable time. A three-dimensional MR fingerprinting sequence with a radia
The work seeks to develop an algorithm for image reconstruction by directly inverting the non-linear data model in spectral CT. Using the non-linear data model, we formulate the image-reconstruction problem as a non-convex optimization program, and d
The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and