ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time non-rigid 3D respiratory motion estimation for MR-guided radiotherapy using MR-MOTUS

107   0   0.0 ( 0 )
 نشر من قبل Niek Huttinga
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and adjusting the radiotherapy plan accordingly. Optimal MR-guidance for respiratory motion during radiotherapy requires MR-based 3D motion estimation with a latency of 200-500 ms. Currently this is still challenging since typical methods rely on MR-images, and are therefore limited by the 3D MR-imaging latency. In this work, we present a method to perform non-rigid 3D respiratory motion estimation with 170 ms latency, including both acquisition and reconstruction. The proposed method called real-time low-rank MR-MOTUS reconstructs motion-fields directly from k-space data, and leverages an explicit low-rank decomposition of motion-fields to split the large scale 3D+t motion-field reconstruction problem posed in our previous work into two parts: (I) a medium-scale offline preparation phase and (II) a small-scale online inference phase which exploits the results of the offline phase for real-time computations. The method was validated on free-breathing data of five volunteers, acquired with a 1.5T Elekta Unity MR-Linac. Results show that the reconstructed 3D motion-field are anatomically plausible, highly correlated with a self-navigation motion surrogate (R = 0.975 +/- 0.0110), and can be reconstructed with a total latency of 170 ms that is sufficient for real-time MR-guided abdominal radiotherapy.



قيم البحث

اقرأ أيضاً

With the recent introduction of the MR-LINAC, an MR-scanner combined with a radiotherapy LINAC, MR-based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs-at-risk motion during radiotherapy. To thi s extent, we introduce low-rank MR-MOTUS, a framework to retrospectively reconstruct time-resolved non-rigid 3D+t motion-fields from a single low-resolution reference image and prospectively undersampled k-space data acquired during motion. Low-rank MR-MOTUS exploits spatio-temporal correlations in internal body motion with a low-rank motion model, and inverts a signal model that relates motion-fields directly to a reference image and k-space data. The low-rank model reduces the degrees-of-freedom, memory consumption and reconstruction times by assuming a factorization of space-time motion-fields in spatial and temporal components. Low-rank MR-MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden-ratio radial readouts. Reconstructed 2D and 3D respiratory motion-fields were respectively validated against time-resolved and respiratory-resolved image reconstructions, and the head motion against static image reconstructions from fully-sampled data acquired right before and right after the motion. Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion-fields-per-second, 3D+t respiratory motion at 7.6 motion-fields-per-second and 3D+t head-neck motion at 9.3 motion-fields-per-second. The validations show good consistency with image reconstructions. The proposed framework can estimate time-resolved non-rigid 3D motion-fields, which allows to characterize drifts and intra and inter-cycle patterns in breathing motion during radiotherapy, and could form the basis for real-time MR-guided radiotherapy.
Purpose: To study the accuracy of motion information extracted from beat-to-beat 3D image-based navigators (3D iNAVs) collected using a variable-density cones trajectory with different combinations of spatial resolutions and scan acceleration factors . Methods: Fully sampled, breath-held 4.4 mm 3D iNAV datasets for six respiratory phases are acquired in a volunteer. Ground truth translational and nonrigid motion information is derived from these datasets. Subsequently, the motion estimates from synthesized undersampled 3D iNAVs with isotropic spatial resolutions of 4.4 mm (acceleration factor = 10.9), 5.4 mm (acceleration factor = 7.2), 6.4 mm (acceleration factor = 4.2), and 7.8 mm (acceleration factor = 2.9) are assessed against the ground truth information. The undersampled 3D iNAV configuration with the highest accuracy motion estimates in simulation is then compared with the originally proposed 4.4 mm undersampled 3D iNAV in six volunteer studies. Results: The simulations indicate that for navigators beyond certain scan acceleration factors, the accuracy of motion estimates is compromised due to errors from residual aliasing and blurring/smoothening effects following compressed sensing reconstruction. The 6.4 mm 3D iNAV achieves an acceptable spatial resolution with a small acceleration factor, resulting in the highest accuracy motion information among all assessed undersampled 3D iNAVs. Reader scores for six volunteer studies demonstrate superior coronary vessel sharpness when applying an autofocusing nonrigid correction technique using the 6.4 mm 3D iNAVs in place of 4.4 mm 3D iNAVs. Conclusion: Undersampled 6.4 mm 3D iNAVs enable motion tracking with improved accuracy relative to previously proposed undersampled 4.4 mm 3D iNAVs.
Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach for MRI image INU correction. Method: We developed a residual cycle generative adversarial network (res-cycle GAN), which integrates the residual block concept into a cycle-consistent GAN (cycle-GAN). In cycle-GAN, an inverse transformation was implemented between the INU uncorrected and corrected MRI images to constrain the model through forcing the calculation of both an INU corrected MRI and a synthetic corrected MRI. A fully convolution neural network integrating residual blocks was applied in the generator of cycle-GAN to enhance end-to-end raw MRI to INU corrected MRI transformation. A cohort of 30 abdominal patients with T1-weighted MR INU images and their corrections with a clinically established and commonly used method, namely, N4ITK were used as a pair to evaluate the proposed res-cycle GAN based INU correction algorithm. Quantitatively comparisons were made among the proposed method and other approaches. Result: Our res-cycle GAN based method achieved higher accuracy and better tissue uniformity compared to the other algorithms. Moreover, once the model is well trained, our approach can automatically generate the corrected MR images in a few minutes, eliminating the need for manual setting of parameters. Conclusion: In this study, a deep learning based automatic INU correction method in MRI, namely, res-cycle GAN has been investigated. The results show that learning based methods can achieve promising accuracy, while highly speeding up the correction through avoiding the unintuitive parameter tuning process in N4ITK correction.
Purpose: Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules and ihMT appears to be specific to myelinated tiss ue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios, and quantitative parameter maps. Theory and Methods: Building upon previous work that uses multiband radiofrequency (RF) pulses to efficiently generate ihMT contrast, we propose a cyclic-steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of a magnetic resonance fingerprinting (MRF) acquisition, except that the signal fluctuations are entirely mediated by magnetization transfer effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio (MTR) and ihMT ratio (ihMTR) maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. Results: Phantom and in vivo brain data acquired at 1.5T demonstrate the expected contrast trends, with ihMTR maps showing contrast more specific to white matter (WM), as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. Conclusions: By cycling between multiband and single-band pulses, an entirely magnetization transfer mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular specific tissue parameters.
63 - Florian Griese 2019
Purpose: Using 4D magnetic particle imaging (MPI), intravascular optical coherence tomography (IVOCT) catheters are tracked in real time in order to compensate for image artifacts related to relative motion. Our approach demonstrates the feasibility for bimodal IVOCT and MPI in-vitro experiments. Material and Methods: During IVOCT imaging of a stenosis phantom the catheter is tracked using MPI. A 4D trajectory of the catheter tip is determined from the MPI data using center of mass sub-voxel strategies. A custom built IVOCT imaging adapter is used to perform different catheter motion profiles: no motion artifacts, motion artifacts due to catheter bending, and heart beat motion artifacts. Two IVOCT volume reconstruction methods are compared qualitatively and quantitatively using the DICE metric and the known stenosis length. Results: The MPI-tracked trajectory of the IVOCT catheter is validated in multiple repeated measurements calculating the absolute mean error and standard deviation. Both volume reconstruction methods are compared and analyzed whether they are capable of compensating the motion artifacts. The novel approach of MPI-guided catheter tracking corrects motion artifacts leading to a DICE coefficient with a minimum of 86% in comparison to 58% for a standard reconstruction approach. Conclusions: IVOCT catheter tracking with MPI in real time is an auspicious method for radiation free MPI-guided IVOCT interventions. The combination of MPI and IVOCT can help to reduce motion artifacts due to catheter bending and heart beat for optimized IVOCT volume reconstructions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا