ﻻ يوجد ملخص باللغة العربية
An experimental protocol is developed to directly measure the new material functions revealed by medium amplitude parallel superposition (MAPS) rheology. This experimental protocol measures the medium amplitude response of a material to a simple shear deformation composed of three sine waves at different frequencies. Imposing this deformation and measuring the mechanical response reveals a rich data set consisting of up to 19 measurements of the third order complex modulus at distinct three-frequency coordinates. We discuss how the choice of the input frequencies influences the features of the MAPS domain studied by the experiment. A polynomial interpolation method for reducing the bias of measured values from spectral leakage and variance due to noise is discussed, including a derivation of the optimal range of amplitudes for the input signal. This leads to the conclusion that conducting the experiment in a stress-controlled fashion possesses a distinct advantage to the strain-controlled mode. The experimental protocol is demonstrated through measurements of the MAPS response of a model complex fluid: a surfactant solution of wormlike micelles. The resulting data set is indeed large and feature-rich, while still being acquired in a time comparable to similar medium amplitude oscillatory shear (MAOS) experiments. We demonstrate that the data represents measurements of an intrinsic material function by studying its internal consistency, its compatibility with low-frequency predictions for Coleman-Noll simple fluids, and its agreement with data obtained via MAOS amplitude sweeps. Finally, the data is compared to predictions from the corotational Maxwell model to demonstrate the power of MAPS rheology in determining whether a constitutive model is consistent with a materials time-dependent response.
A new mathematical representation for nonlinear viscoelasticity is presented based on application of the Volterra series expansion to the general nonlinear relationship between shear stress and shear strain history. This theoretical and experimental
The weakly nonlinear rheology of a surfactant solution of wormlike micelles is investigated from both a modeling and experimental perspective using the framework of medium amplitude parallel superposition (MAPS) rheology. MAPS rheology defines materi
Mixing a small amount of liquid into a powder can give rise to dry-looking granules; increasing the amount of liquid eventually produces a flowing suspension. We perform experiments on these phenomena using Spheriglass, an industrially-realistic mode
In a previous work, we proposed an integrability setup for computing non-planar corrections to correlation functions in $mathcal{N}=4$ super Yang-Mills theory at any value of the coupling constant. The procedure consists of drawing all possible tree-
A general framework for Maxwell-Oldroyd type differential constitutive models is examined, in which an unspecified nonlinear function of the stress and rate-of-deformation tensors is incorporated into the well-known corotational version of the Jeffre