ترغب بنشر مسار تعليمي؟ اضغط هنا

Medium Amplitude Parallel Superposition (MAPS) Rheology, Part 1: Mathematical Framework and Theoretical Examples

132   0   0.0 ( 0 )
 نشر من قبل Kyle Lennon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new mathematical representation for nonlinear viscoelasticity is presented based on application of the Volterra series expansion to the general nonlinear relationship between shear stress and shear strain history. This theoretical and experimental framework, which we call Medium Amplitude Parallel Superposition (MAPS) Rheology, reveals a new material property, the third order complex modulus, which describes completely the weakly nonlinear response of a viscoelastic material in an arbitrary simple shear flow. In this first part, we discuss several theoretical aspects of this mathematical formulation and new material property. For example, we show how MAPS measurements can be performed in strain- or stress-controlled contexts and provide relationships between the weakly nonlinear response functions measured in each case. We show that the MAPS response function is a super-set of the response functions that have been previously reported in medium amplitude oscillatory shear and parallel superposition rheology experiments. We also show how to exploit inherent symmetries of the MAPS response function to reduce it to a minimal domain for straightforward measurement and visualization. We compute this material property for a few constitutive models to illustrate the potential richness of the data sets generated by MAPS experiments. Finally, we discuss the MAPS framework in the context of some other nonlinear, time-dependent rheological probes and explain how the MAPS methodology has a distinct advantage over these others because it generates data embedded in a very high dimensional space without driving fluid mechanical instabilities, and is agnostic to the flow protocol.



قيم البحث

اقرأ أيضاً

An experimental protocol is developed to directly measure the new material functions revealed by medium amplitude parallel superposition (MAPS) rheology. This experimental protocol measures the medium amplitude response of a material to a simple shea r deformation composed of three sine waves at different frequencies. Imposing this deformation and measuring the mechanical response reveals a rich data set consisting of up to 19 measurements of the third order complex modulus at distinct three-frequency coordinates. We discuss how the choice of the input frequencies influences the features of the MAPS domain studied by the experiment. A polynomial interpolation method for reducing the bias of measured values from spectral leakage and variance due to noise is discussed, including a derivation of the optimal range of amplitudes for the input signal. This leads to the conclusion that conducting the experiment in a stress-controlled fashion possesses a distinct advantage to the strain-controlled mode. The experimental protocol is demonstrated through measurements of the MAPS response of a model complex fluid: a surfactant solution of wormlike micelles. The resulting data set is indeed large and feature-rich, while still being acquired in a time comparable to similar medium amplitude oscillatory shear (MAOS) experiments. We demonstrate that the data represents measurements of an intrinsic material function by studying its internal consistency, its compatibility with low-frequency predictions for Coleman-Noll simple fluids, and its agreement with data obtained via MAOS amplitude sweeps. Finally, the data is compared to predictions from the corotational Maxwell model to demonstrate the power of MAPS rheology in determining whether a constitutive model is consistent with a materials time-dependent response.
The weakly nonlinear rheology of a surfactant solution of wormlike micelles is investigated from both a modeling and experimental perspective using the framework of medium amplitude parallel superposition (MAPS) rheology. MAPS rheology defines materi al functions, such as the third order complex compliance, which span the entire weakly nonlinear response space of viscoelastic materials to simple shear deformations. Three-tone oscillatory shear deformations are applied to obtain feature-rich data characterizing the third order complex compliance with high data throughput. Here, data for a CPyCl solution are compared to the analytical solution for the MAPS response of a reptation-reaction constitutive model, which treats micelles as linear polymers that can break apart and recombine in solution. Regression of the data to the model predictions provides new insight into how these breakage and recombination processes are affected by shear, and demonstrates the importance of using information-rich data to infer precise estimates of model parameters.
The basic ingredients of osmotic pressure are a solvent fluid with a soluble molecular species which is restricted to a chamber by a boundary which is permeable to the solvent fluid but impermeable to the solute molecules. For macroscopic systems at equilibrium, the osmotic pressure is given by the classical vant Hoff Law, which states that the pressure is proportional to the product of the temperature and the difference of the solute concentrations inside and outside the chamber. For microscopic systems the diameter of the chamber may be comparable to the length-scale associated with the solute-wall interactions or solute molecular interactions. In each of these cases, the assumptions underlying the classical vant Hoff Law may no longer hold. In this paper we develop a general theoretical framework which captures corrections to the classical theory for the osmotic pressure under more general relationships between the size of the chamber and the interaction length scales. We also show that notions of osmotic pressure based on the hydrostatic pressure of the fluid and the mechanical pressure on the bounding walls of the chamber must be distinguished for microscopic systems. To demonstrate how the theoretical framework can be applied, numerical results are presented for the osmotic pressure associated with a polymer of N monomers confined in a spherical chamber as the bond strength is varied.
Hydrodynamic interactions are crucial for determining the cooperative behavior of microswimmers at low Reynolds numbers. Here we provide a comprehensive analysis of the scaling and strength of the interactions in the case of a pair of three-sphere sw immers with intrinsic elasticity. Both stroke-based and force-based microswimmers are analyzed using an analytic perturbative approach. Following a detailed analysis of the passive interactions, as well as active translations and rotations, we find that the mapping between the stroke-based and force-based swimmers is only possible in a low driving frequency regime where the characteristic time scale is smaller than the viscous one. Furthermore, we find that for swimmers separated by up to hundreds of swimmer lengths, swimming in pairs speeds up the self propulsion, due to the dominant quadrupolar hydrodynamic interactions. Finally, we find that the long term behavior of the swimmers, while sensitive to initial relative positioning, does not depend on the pusher or puller nature of the swimmer.
In this manuscript, we study the electrically induced breathing of Metal-Organic Framework (MOF) within a 2D lattice model. The Helmholtz free energy of the MOF in electric field consists of two parts: the electrostatic energy of the dielectric body in the external electric field and elastic energy of the framework. The first contribution is calculated from the first principles of statistical mechanics with an account of MOF symmetry. By minimizing the obtained free energy and solving the resulting system of equations, we obtain the local electric field and the parameter of the unit cell (angle $alpha$). The paper also studies the cross-section area of the unit cell and the polarization as functions of the external electric field. We obtain the hysteresis in the region of the structural transition of the framework. Our results are in qualitative agreement with the literature data of the molecular dynamics (MD) simulation of MIL-53(Cr).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا