ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature enhancement of thermal Hall conductance quantization

85   0   0.0 ( 0 )
 نشر من قبل Ion Cosma Fulga
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quest for non-Abelian quasiparticles has inspired decades of experimental and theoretical efforts, where the scarcity of direct probes poses a key challenge. Among their clearest signatures is a thermal Hall conductance with quantized half-integer value in natural units $ pi^2 k_B^2 T /3 h$ ($T$ is temperature, $h$ the Planck constant, $k_B$ the Boltzmann constant). Such a value was indeed recently observed in a quantum-Hall system and a magnetic insulator. We show that a non-topological thermal metal phase that forms due to quenched disorder may disguise as a non-Abelian phase by well approximating the trademark quantized thermal Hall response. Remarkably, the quantization here improves with temperature, in contrast to fully gapped systems. We provide numerical evidence for this effect and discuss its possible implications for the aforementioned experiments.



قيم البحث

اقرأ أيضاً

In contrast to the case of ordinary quantum Hall effect, the resistance of ballistic helical edge channels in typical quantum spin-Hall experiments is non-vanishing, additive and poorly quantized. Here we present a simple argument connecting this qua litative difference with a spin relaxation in the current/voltage leads in an experimentally relevant multi-terminal bar geometry. Both the finite lead resistance and the spin relaxation contribute to a non-vanishing four-terminal edge resistance, explaining poor quantization quality. We show that corrections to the four-terminal and two-terminal resistances in the limit of strong spin relaxation are opposite in sign, making a measurement of the spin relaxation resistance feasible, and estimate the magnitude of the effect in HgTe-based quantum wells.
121 - Olivier Bourgeois 2006
We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On Insulator (SOI) substrate. We measure the thermal conductance of the phonon wave guide by the 3 method. The cross-section of the nanowire approaches the dominant phonon wavelength in silicon which is of the order of 100 nm at 1K. Above 1.3K the conductance behaves as T3, but a deviation is measured at the lowest temperature which can be attributed to the reduced geometry.
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at tempe ratures as high as 80 K and channel lengths as long as 1.7 $mu$m. The observed quantization is in agreement with that predicted by theoretical calculations.
We proposed a new way, adding intertube atoms, to enhance interfacial thermal conductance (ITC) between SiC-carbon nanotube (CNT) array structure. Non-equilibrium molecular dynamics method was used to study the ITC. The results show that the intertub e atoms can significantly enhance the ITC. The dependence of ITC on both the temperature and the number of intertube atoms are shown. The mechanism is analyzed by calculating probability distributions of atomic forces and vibrational density of states. Our study may provide some guidance on enhancing the ITC of CNT-based composites.
The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS$_2$ with AlN and SiO$_2$, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MWm$^-$$^2$K$^-$$^1$ near room temperature, increasing as ~ T$^0$$^.$$^6$$^5$ in the range 300 - 600 K. The similar TBC of MoS$_2$ with the two substrates indicates that MoS$_2$ is the softer material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. Our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا