ترغب بنشر مسار تعليمي؟ اضغط هنا

Noisy quantum metrology enhanced by continuous nondemolition measurement

79   0   0.0 ( 0 )
 نشر من قبل Matteo A. C. Rossi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to improve the precision of frequency estimation even in the presence of independent dephasing acting on each atom. We numerically simulate the dynamics of an ensemble with up to N = 150 atoms initially prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the measurement, the information obtainable from the continuous photocurrent scales superclassically with respect to the number of atoms N. We provide evidence that such superclassical scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final strong measurement on the conditional states generated during the dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and standard estimation schemes, where the state preparation time is neglected.



قيم البحث

اقرأ أيضاً

We propose a technique to control the macroscopic collective nuclear spin of a Helium-3 vapor in the quantum regime using light. The scheme relies on metastability exchange collisions to mediate interactions between optically accessible metastable st ates and the ground-state nuclear spin, giving rise to an effective nuclear spin-light quantum nondemolition interaction of the Faraday form. Our technique enables measurement-based quantum control of nuclear spins, such as the preparation of spin-squeezed states. This, combined with the day-long coherence time of nuclear spin states in Helium-3, opens the possibility for a number of applications in quantum technology.
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudo-spin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answe r positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.
The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noi se are actively being explored. Here we experimentally protect a room-temperature hybrid spin register against environmental decoherence by performing repeated quantum error correction whilst maintaining sensitivity to signal fields. We use a long-lived nuclear spin to correct multiple phase errors on a sensitive electron spin in diamond and realize magnetic field sensing beyond the timescales set by natural decoherence. The universal extension of sensing time, robust to noise at any frequency, demonstrates the definitive advantage entangled multi-qubit systems provide for quantum sensing and offers an important complement to quantum control techniques. In particular, our work opens the door for detecting minute signals in the presence of high frequency noise, where standard protocols reach their limits.
Present protocols of criticality enhanced sensing with open quantum sensors assume direct measurement of the sensor and omit the radiation quanta emitted to the environment, thereby omitting potentially valuable information. Here we propose a protoco l for criticality enhanced sensing via continuous observation of the emitted radiation quanta. Under general assumptions, we establish a scaling theory for the global quantum Fisher information of the joint system and environment state at a dissipative critical point. We demonstrate that it obeys universal scaling laws featuring transient and long-time behavior governed by the underlying critical exponents. Importantly, such scaling laws exceed the standard quantum limit and can in principle satuarate the Heisenberg limit. To harness such advantageous scaling, we propose a practical sensing scheme based on continuous detection of the emitted quanta. In such a scheme a single interrogation corresponds to a (stochastic) quantum trajectory of the open system evolving under the non-unitary dynamics dependent on the parameter to be sensed and the back-action of the continuous measurement. Remarkably, we demonstrate that the associated precision scaling significantly exceeds that based on direct measurement of the critical steady state, thereby establishing the metrological value of detection of the emitted quanta at dissipative criticality. We illustrate our protocol via counting the photons emitted by the open Rabi model, a paradigmatic model for the study of dissipative phase transition with finite components. Our protocol is applicable to diverse open quantum sensors permitting continuous readout, and may find applications at the frontier of quantum sensing such as human-machine interface, magnetic diagnosis of heart disease and zero-field nuclear magnetic resonance.
The main obstacle for practical quantum technology is the noise, which can induce the decoherence and destroy the potential quantum advantages. The fluctuation of a field, which induces the dephasing of the system, is one of the most common noises an d widely regarded as detrimental to quantum technologies. Here we show, contrary to the conventional belief, the fluctuation can be used to improve the precision limits in quantum metrology for the estimation of various parameters. Specifically, we show that for the estimation of the direction and rotating frequency of a field, the achieved precisions at the presence of the fluctuation can even surpass the highest precision achievable under the unitary dynamics which have been widely taken as the ultimate limit. We provide explicit protocols, which employs the adaptive quantum error correction, to achieve the higher precision limits with the fluctuating fields. Our study provides a completely new perspective on the role of the noises in quantum metrology. It also opens the door for higher precisions beyond the limit that has been believed to be ultimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا