ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-enhanced interferometry with large heralded photon-number states

112   0   0.0 ( 0 )
 نشر من قبل Guillaume Thekkadath
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting of $N$ entangled photons provides up to a $sqrt{N}$ enhancement in phase sensitivity compared to a classical probe of the same energy. Here, we employ high-gain parametric down-conversion sources and photon-number-resolving detectors to perform interferometry with heralded quantum probes of sizes up to $N=8$ (i.e. measuring up to 16-photon coincidences). Our probes are created by injecting heralded photon-number states into an interferometer, and in principle provide quantum-enhanced phase sensitivity even in the presence of significant optical loss. Our work paves the way towards quantum-enhanced interferometry using large entangled photonic states.

قيم البحث

اقرأ أيضاً

Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, textit{i.e .}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5$pm$8% and 95.0$pm$8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.
We develop general tools to characterise and efficiently compute relevant observables of multimode $N$-photon states generated in non-linear decays in one-dimensional waveguides. We then consider optical interferometry in a Mach-Zender interferometer where a $d$-mode photonic state enters in each arm of the interferometer. We derive a simple expression for the Quantum Fisher Information in terms of the average photon number in each mode, and show that it can be saturated by number-resolved photon measurements that do not distinguish between the different $d$ modes.
Blind quantum computation is a scheme that adds unconditional security to cloud quantum computation. In the protocol proposed by Broadbent, Fitzsimons, and Kashefi, the ability to prepare and transmit a single qubit is required for a user (client) wh o uses a quantum computer remotely. In case a weak coherent pulse is used as a pseudo single photon source, however, we must introduce decoy states, owing to the inherent risk of transmitting multiple photon. In this study, we demonstrate that by using a heralded single photon source and a probabilistic photon number resolving detector, we can gain a higher blind state generation efficiency and longer access distance, owing to noise reduction on account of the heralding signal.
118 - Wei Zhong , Fan Wang , Lan Zhou 2020
In this paper, we investigate the phase sensitivities in two-path optical interferometry with asymmetric beam splitters. Here, we present the optimal conditions for the transmission ratio and the phase of the beam splitter to gain the highest sensiti vities for a general class of non-classical states with parity symmetry. Additionally, we address the controversial question of whether the scheme with a combination of coherent state and photon-added or photon-subtracted squeezed vacuum state is better or worse than the most celebrated one using a combination of coherent state and squeezed vacuum state.
We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon-number-splitting attack. This protocol relies on th e non-commutation of photon phase and number to detect an eavesdropper performing quantum non-demolition measurement on number. The potential advantages and disadvantages of this scheme are compared to the coherent decoy state protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا