ترغب بنشر مسار تعليمي؟ اضغط هنا

A cyanine dye rotaxane porphyrin nanoring complex as a model light harvesting system

87   0   0.0 ( 0 )
 نشر من قبل Harry Anderson Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A nanoring-rotaxane supramolecular assembly, with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring, has been synthesized as a model for the energy transfer between the light harvesting complex LH1 and the reaction center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, explaining the efficient energy transfer and elucidating the similarity with structurally related natural light harvesting systems.

قيم البحث

اقرأ أيضاً

The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion (HEOM) approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.
We discuss our recent theoretical work on vibronic coupling mechanisms in a model energy transfer system in the context of previous 2DEV experiments on a natural light-harvesting system, light-harvesting complex II (LHCII), where vibronic signatures were suggested to be involved in energy transfer. In this comparison, we directly assign the vibronic coupling mechanism in LHCII as arising from Herzberg-Teller activity and show how this coupling modulates the energy transfer dynamics in this photosynthetic system.
We predict the enhanced light harvesting of a protein-pigment complex when assembled to a quantum dot (QD) antenna. Our prototypical nanoassembly setup is composed of a Fenna-Mattews-Olson system hosting 8 Bacteriochlorophyll (BChl) a dyes, and a nea r-infrared emitting CdSe$_x$Te$_{(1-x)}$/ZnS alloy-core/shell nanocrystal. BChl a has two wide windows of poor absorption in the green and orange-red bands, precisely where most of the sunlight energy lies. The selected QD is able to collect sunlight efficiently in a broader band and funnel its energy by a (non-radiative) Forster resonance energy transfer mechanism to the dyes embedded in the protein. By virtue of the coupling between the QD and the dyes, the nanoassembly absorption is dramatically improved in the poor absorption window of the BChl a.
There is a renewed interest in the derivation of statistical mechanics from the dynamics of closed quantum systems. A central part of this program is to understand how far-from-equilibrium closed quantum system can behave as if relaxing to a stable e quilibrium. Equilibration dynamics has been traditionally studied with a focus on the so-called quenches of large-scale many-body systems. Alternatively, we consider here the equilibration of a molecular model system describing the double proton transfer reaction in porphine. Using numerical simulations, we show that equilibration in this context indeed takes place and does so very rapidly ($sim !! 200$fs) for initial states induced by pump-dump laser pulse control with energies well above the synchronous tunneling barrier.
We explore how to encode more than a qubit in vanadyl porphyrin molecules hosting a electronic spin 1/2 coupled to a nuclear spin 7/2. The spin Hamiltonian and its parameters, as well as the spin dynamics, have been determined via a combination of el ectron paramagnetic resonance, heat capacity, magnetization and on-chip magnetic spectroscopy experiments performed on single crystals. We find low temperature spin coherence times of micro-seconds and spin relaxation times longer than a second. For sufficiently strong magnetic fields (B larger than 0.1 T, corresponding to resonance frequencies of 9 to 10 GHz) these properties make vanadyl porphyrin molecules suitable qubit realizations. The presence of multiple equispaced nuclear spin levels then merely provides 8 alternatives to define the 0 and 1 basis states. For lower magnetic fields (below 0.1 T), and lower frequencies (smaller than 2 GHz), we find spectroscopic signatures of a sizeable electronuclear entanglement. This effect generates a larger set of allowed transitions between different electronuclear spin states and removes their degeneracies. Under these conditions, we show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit. These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities, such as quantum simulations and, especially, quantum error correction at the molecular level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا