ترغب بنشر مسار تعليمي؟ اضغط هنا

Note: Vibronic coupling in light-harvesting complex II revisited

126   0   0.0 ( 0 )
 نشر من قبل Addison Schile
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss our recent theoretical work on vibronic coupling mechanisms in a model energy transfer system in the context of previous 2DEV experiments on a natural light-harvesting system, light-harvesting complex II (LHCII), where vibronic signatures were suggested to be involved in energy transfer. In this comparison, we directly assign the vibronic coupling mechanism in LHCII as arising from Herzberg-Teller activity and show how this coupling modulates the energy transfer dynamics in this photosynthetic system.

قيم البحث

اقرأ أيضاً

The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion (HEOM) approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.
We introduce a heterodimer model in which multiple mechanisms of vibronic coupling and their impact on energy transfer can be explicitly studied. We consider vibronic coupling that arises through either Franck-Condon activity in which each site in th e heterodimer has a local electron-phonon coupling and as Herzberg-Teller activity in which the transition dipole moment coupling the sites has an explicit vibrational mode-dependence. We have computed two-dimensional electronic-vibrational (2DEV) spectra for this model while varying the magnitude of these two effects and find that 2DEV spectra contain static and dynamic signatures of both types of vibronic coupling. Franck-Condon activity emerges through a change in the observed excitonic structure while Herzberg-Teller activity is evident in the appearance of significant side-band transitions that mimic the lower-energy excitonic structure. A comparison of quantum beating patterns obtained from analysis of the simulated 2DEV spectra shows that this technique can report on the mechanism of energy transfer, elucidating a means of experimentally determining the role of specific vibronic coupling mechanisms in such processes.
A nanoring-rotaxane supramolecular assembly, with a Cy7 cyanine dye (hexamethylindotricarbocyanine) threaded along the axis of the nanoring, has been synthesized as a model for the energy transfer between the light harvesting complex LH1 and the reac tion center in purple bacteria photosynthesis. The complex displays efficient energy transfer from the central cyanine dye to the surrounding zinc porphyrin nanoring. We present a theoretical model that reproduces the absorption spectrum of the nanoring and quantifies the excitonic coupling between the nanoring and the central dye, explaining the efficient energy transfer and elucidating the similarity with structurally related natural light harvesting systems.
We show that the efficient excitation energy transfer in the Fenna-Matthews-Olson molecular aggregate under realistic physiological conditions is fueled by underdamped vibrations of the embedding proteins. For this, we present numerically exact resul ts for the quantum dynamics of the excitons in the presence of nonadiabatic vibrational states in the Fenna-Matthews-Olson aggregate employing a environmental fluctuation spectral function derived from experiments. Assuming the prominent 180 cm$^{-1}$ vibrational mode to be underdamped, we observe, on the one hand, besides vibrational coherent oscillations between different excitation levels of the vibration also prolonged electronic coherent oscillations between the initially excited site and its neighbours. On the other hand, however, the underdamped vibrations provide additional channels for the excitation energy transfer and by this increase the transfer speed by up to $30%$ .
Natural and artificial light harvesting processes have recently gained new interest. Signatures of long lasting coherence in spectroscopic signals of biological systems have been repeatedly observed, albeit their origin is a matter of ongoing debate, as it is unclear how the loss of coherence due to interaction with the noisy environments in such systems is averted. Here we report experimental and theoretical verification of coherent exciton-vibrational (vibronic) coupling as the origin of long-lasting coherence in an artificial light harvester, a molecular J-aggregate. In this macroscopically aligned tubular system, polarization controlled 2D spectroscopy delivers an uncongested and specific optical response as an ideal foundation for an in-depth theoretical description. We derive analytical expressions that show under which general conditions vibronic coupling leads to prolonged excited-state coherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا