ﻻ يوجد ملخص باللغة العربية
Spatiotemporal spin dynamics under spin-orbit interaction is investigated in a (001) GaAs two-dimensional electron gas using magneto-optical Kerr rotation microscopy. Spin polarized electrons are diffused away from the excited position, resulting in spin precession because of the diffusion-induced spin-orbit field. Near the cancellation between spin-orbit field and external magnetic field, the induced spin precession frequency depends nonlinearly on the diffusion velocity, which is unexpected from the conventional linear relation between the spin-orbit field and the electron velocity.This behavior originates from an enhancement of the spin relaxation anisotropy by the electron velocity perpendicular to the diffused direction. We demonstrate that the spin relaxation anisotropy, which has been regarded as a material constant, can be controlled via diffusive electron motion.
It is a common perception that the transport of a spin current in polycrystalline metal is isotropic and independent of the polarization direction, even though spin current is a tensorlike quantity and its polarization direction is a key variable. We
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are ob
We study the intra-valley spin-orbit mediated spin relaxation in monolayers of MoS2 within a two bands effective Hamiltonian. The intrinsic spin splitting of the valence band as well as a Rashba-like coupling due to the breaking of the out-of-plane i
Spin relaxation can be greatly enhanced in narrow channels of two-dimensional electron gas due to ballistic spin resonance, which is mediated by spin-orbit interaction for trajectories that bounce rapidly between channel walls. The channel orientatio
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit