ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Aspects of Doubled Geometry and Pre-rackoid

65   0   0.0 ( 0 )
 نشر من قبل Shin Sasaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The integration problem of a C-bracket and a Vaisman (metric, pre-DFT) algebroid which are geometric structures of double field theory (DFT) is analyzed. We introduce a notion of a pre-rackoid as a global group-like object for an infinitesimal algebroid structure. We propose that several realizations of pre-rackoid structures. One realization is that elements of a pre-rackoid are defined by cotangent paths along doubled foliations in a para-Hermitian manifold. Another realization is proposed as a formal exponential map of the algebroid of DFT. We show that the pre-rackoid reduces to a rackoid that is the integration of the Courant algebroid when the strong constraint of DFT is imposed. Finally, for a physical application, we exhibit an implementation of the (pre-)rackoid in a three-dimensional topological sigma model.



قيم البحث

اقرأ أيضاً

85 - Haruka Mori , Shin Sasaki 2020
We continue to study doubled aspects of algebroid structures equipped with the C-bracket in double field theory (DFT). We find that a family of algebroids, the Vaisman (metric or pre-DFT), the pre- and the ante-Courant algebroids are constructed by t he analogue of the Drinfeld double of Lie algebroid pairs. We examine geometric implementations of these algebroids in the para-Hermitian manifold, which is a realization of the doubled space-time in DFT. We show that the strong constraint in DFT is necessary to realize the doubled and non-trivial Poisson structures but can be relaxed for some algebroids. The doubled structures of twisted brackets and those associated with group manifolds are briefly discussed.
384 - Nima Moshayedi 2020
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifold s, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
We derive both {em local} and {em global} generalized {em Bianchi identities} for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the {em a priori} introd uction of a connection. The proof is based on a {em global} decomposition of the {em variational Lie derivative} of the generalized Euler--Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that {em within} a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism {em is not} intrinsically arbitrary. As a consequence the existence of {em canonical} global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
We continue the study of fuzzy geometries inside Connes spectral formalism and their relation to multimatrix models. In this companion paper to [arXiv:2007:10914, Ann. Henri Poincare, 2021] we propose a gauge theory setting based on noncommutative ge ometry, which -- just as the traditional formulation in terms of almost-commutative manifolds -- has the ability to also accommodate a Higgs field. However, in contrast to `almost-commutative manifolds, the present framework employs only finite dimensional algebras. In a path-integral quantization approach to the Spectral Action, this allows to state Yang-Mills--Higgs theory (on four-dimensional Euclidean fuzzy space) as an explicit random multimatrix model obtained here, whose matrix fields exactly mirror those of the Yang-Mills--Higgs theory on a smooth manifold.
We develop the differential aspects of a noncommutative geometry for the Quantum Hall Effect in the continuous, with the ambition of proving Kubos formula. Taking inspiration from the ideas developed by Bellissard during the 80s we build a Fredholm m odule for the $C^*$-algebra of continuous magnetic operators, based on a Dirac operator closely related to the quantum harmonic oscillator. An important piece of Bellissards theory (the so-called second Connes formula) is proved. This work provides the continuation of the recent article [DS].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا