ﻻ يوجد ملخص باللغة العربية
We continue to study doubled aspects of algebroid structures equipped with the C-bracket in double field theory (DFT). We find that a family of algebroids, the Vaisman (metric or pre-DFT), the pre- and the ante-Courant algebroids are constructed by the analogue of the Drinfeld double of Lie algebroid pairs. We examine geometric implementations of these algebroids in the para-Hermitian manifold, which is a realization of the doubled space-time in DFT. We show that the strong constraint in DFT is necessary to realize the doubled and non-trivial Poisson structures but can be relaxed for some algebroids. The doubled structures of twisted brackets and those associated with group manifolds are briefly discussed.
The integration problem of a C-bracket and a Vaisman (metric, pre-DFT) algebroid which are geometric structures of double field theory (DFT) is analyzed. We introduce a notion of a pre-rackoid as a global group-like object for an infinitesimal algebr
The metric algebroid proposed by Vaisman (the Vaisman algebroid) governs the gauge symmetry algebra generated by the C-bracket in double field theory (DFT). We show that the Vaisman algebroid is obtained by an analogue of the Drinfeld double of Lie a
In this paper we discuss two constructions of an effective field theory starting from a local interaction functional. One relies on the well-established graphical combinatorics of the BPHZ algorithm to renormalize divergent Feynman amplitudes. The ot
Equivalence between algebraic structures generated by parastatisticstriple relations of Green (1953) and Greenberg -- Messiah (1965), and certain orthosymplectic $mathbb{Z}_2times mathbb{Z}_2$-graded Lie superalgebras is found explicitly. Moreover, i
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe