ﻻ يوجد ملخص باللغة العربية
We use field-cycling-assisted dynamic nuclear polarization and continuous radio-frequency (RF) driving over a broad spectral range to demonstrate magnetic-field-dependent activation of nuclear spin transport from strongly-hyperfine-coupled 13C sites in diamond. We interpret our observations with the help of a theoretical framework where nuclear spin interactions are mediated by electron spins. In particular, we build on the results from a 4-spin toy model to show how otherwise localized nuclear spins must thermalize as they are brought in contact with a larger ancilla spin network. Further, by probing the system response to a variable driving field amplitude, we witness stark changes in the RF-absorption spectrum, which we interpret as partly due to contributions from heterogeneous multi-spin sets, whose zero-quantum transitions become RF active thanks to the hybrid electron-nuclear nature of the system. These findings could prove relevant in applications to dynamic nuclear polarization, spin-based quantum information processing, and nanoscale sensing.
Nuclear magnetism in n-doped semiconductors with positive hyperfine constant is revisited. Two kinds of nuclear magnetic ordering can be induced by resident electrons in a deeply cooled nuclear spin system. At positive nuclear spin temperature below
Recently, magnetic field sensors based on an electron spin of a nitrogen vacancy (NV) center in diamond have been studied both from an experimental and theoretical point of view. This system provides a nanoscale magnetometer, and it is possible to de
We report density dependent instabilities in the localised regime of mesoscopic two-dimensional electron systems (2DES) with intermediate strength of background disorder. They are manifested by strong resistance oscillations induced by high perpendic
Artificial spin ices (ASIs) are interacting arrays of lithographically-defined nanomagnets in which novel frustrated magnetic phases can be intentionally designed. A key emergent description of fundamental excitations in ASIs is that of magnetic mono
We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which