ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence and information encoding in quantum reference frames

67   0   0.0 ( 0 )
 نشر من قبل Jan Tuziemski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jan Tuziemski




اسأل ChatGPT حول البحث

Reference frames are of special importance in physics. They are usually considered to be idealized entities. However, in most situations, e.g. in laboratories, physical processes are described within reference frames constituted by physical systems. As new technological developments make it possible to demonstrate quantum properties of complex objects an interesting conceptual problem arises: Could one use states of quantum systems to define reference frames? Recently such a framework has been introduced in [F. Giacomini, E. Castro-Ruiz, and v{C}. Brukner, Nat Commun 10, 494 (2019)]. One of its consequences is the fact that quantum correlations depend on a physical state of an observers reference frame. The aim of this work is to examine the dynamical aspect of this phenomena and show that the same is true for correlations established during an evolution of a composite systems. Therefore, decoherence process is also relative: For some observers the reduced evolution of subsystems is unitary, whereas for others not. I also discuss implications of this results for modern developments of decoherence theory: Quantum Darwinism and Spectrum Broadcast Structures.



قيم البحث

اقرأ أيضاً

Decoherence processes in quantum electrodynamics due to neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927)] or the charged matter [N. Bohr and L. Rosenfeld, K. danske vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)] have been studied from the dawn of the theory. However what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has not been analyzed yet. We present such an analysis for a non-relativistic, point-like charge and thermal radiation. In the dipole approximation, we solve the dynamics and show that there is a regime where, despite of the noise, the observed field carries away almost perfect and hugely redundant information about the charge momentum. We analyze a partial charge-field state and show that it approaches a so called spectrum broadcast structure.
Error correcting codes with a universal set of transversal gates are the desiderata of realising quantum computing. Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, it also rules out codes which are covariant with respect to the action of transversal unitary operations forming continuous symmetries. In this work, starting from an arbitrary code, we construct approximate codes which are covariant with respect to local $SU(d)$ symmetries using quantum reference frames. We show that our codes are capable of efficiently correcting different types of erasure errors. When only a small fraction of the $n$ qudits upon which the code is built are erased, our covariant code has an error that scales as $1/n^2$, which is reminiscent of the Heisenberg limit of quantum metrology. When every qudit has a chance of being erased, our covariant code has an error that scales as $1/n$. We show that the error scaling is optimal in both cases. Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the AdS-CFT duality.
We give a convenient representation for any map that is covariant with respect to an irreducible representation of SU(2), and use this representation to analyze the evolution of a quantum directional reference frame when it is exploited as a resource for performing quantum operations. We introduce the moments of a quantum reference frame, which serve as a complete description of its properties as a frame, and investigate how many times a quantum directional reference frame represented by a spin-j system can be used to perform a certain quantum operation with a given probability of success. We provide a considerable generalization of previous results on the degradation of a reference frame, from which follows a classification of the dynamics of spin-j system under the repeated action of any covariant map with respect to SU(2).
157 - Jieci Wang , Jiliang Jing 2010
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. H ere, we study the decoherence in noninertial frames for the first time. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Robs qubit underging decoherence sudden death may only occur when the acceleration parameter is greater than a critical point.
An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of su ch extreme non-inertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a non-inertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum non-inertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا