ﻻ يوجد ملخص باللغة العربية
Quantum decoherence, which appears when a system interacts with its environment in an irreversible way, plays a fundamental role in the description of quantum-to-classical transitions and has been successfully applied in some important experiments. Here, we study the decoherence in noninertial frames for the first time. It is shown that the decoherence and loss of the entanglement generated by the Unruh effect will influence each other remarkably. It is interesting to note that in the case of the total system under decoherence, the sudden death of entanglement may appear for any acceleration. However, in the case of only Robs qubit underging decoherence sudden death may only occur when the acceleration parameter is greater than a critical point.
Quantum decoherence can arise due to classical fluctuations in the parameters which define the dynamics of the system. In this case decoherence, and complementary noise, is manifest when data from repeated measurement trials are combined. Recently a
The classical and quantum correlations sharing between modes of the Dirac fields in the noninertial frame are investigated. It is shown that: (i) The classical correlation for the Dirac fields decreases as the acceleration increases, which is differe
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of t
Reference frames are of special importance in physics. They are usually considered to be idealized entities. However, in most situations, e.g. in laboratories, physical processes are described within reference frames constituted by physical systems.
It is shown that the Jordan frame and its conformally transformed version, the Einstein frame of nonminimally coupled theories of gravity, are actually equivalent at the quantum level. The example of the theory taken up is the Brans-Dicke theory, and