ﻻ يوجد ملخص باللغة العربية
We study functions of bounded variation (and sets of finite perimeter) on a convex open set $Omegasubseteq X$, $X$ being an infinite dimensional real Hilbert space. We relate the total variation of such functions, defined through an integration by parts formula, to the short-time behaviour of the semigroup associated with a perturbation of the Ornstein--Uhlenbeck operator.
In this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our previous papers in this series. We prove that these spaces are perfect sequence
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for o
We characterize the trace of magnetic Sobolev spaces defined in a half-space or in a smooth bounded domain in which the magnetic field $A$ is differentiable and its exterior derivative corresponding to the magnetic field $dA$ is bounded. In particula
In this article we study standard subspaces of Hilbert spaces of vector-valued holomorphic functions on tube domains E + i C^0, where C subeq E is a pointed generating cone invariant under e^{R h} for some endomorphism h in End(E), diagonalizable wit
In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Bronsted-Rockafellar type property. We show