ﻻ يوجد ملخص باللغة العربية
In this article we study standard subspaces of Hilbert spaces of vector-valued holomorphic functions on tube domains E + i C^0, where C subeq E is a pointed generating cone invariant under e^{R h} for some endomorphism h in End(E), diagonalizable with the eigenvalues 1,0,-1 (generalizing a Lorentz boost). This data specifies a wedge domain W(E,C,h) subeq E and one of our main results exhibits corresponding standard subspaces as being generated using test functions on these domains. We also investigate aspects of reflection positivity for the triple (E,C,e^{pi i h}) and the support properties of distributions on E, arising as Fourier transforms of operator-valued measures defining the Hilbert spaces H. For the imaginary part of these distributions, we find similarities to the well known Huygens principle, relating to wedge duality in the Minkowski context. Interesting examples are the Riesz distributions associated to euclidean Jordan algebras.
We study functions of bounded variation (and sets of finite perimeter) on a convex open set $Omegasubseteq X$, $X$ being an infinite dimensional real Hilbert space. We relate the total variation of such functions, defined through an integration by pa
We present a brief review of discrete structures in a finite Hilbert space, relevant for the theory of quantum information. Unitary operator bases, mutually unbiased bases, Clifford group and stabilizer states, discrete Wigner function, symmetric inf
The category of Hilbert spaces and contractions has filtered colimits, and tensoring preserves them. We also discuss (problems with) bounded maps.
We reformulate entanglement wedge reconstruction in the language of operator-algebra quantum error correction with infinite-dimensional physical and code Hilbert spaces. Von Neumann algebras are used to characterize observables in a boundary subregio
The higher rank Racah algebra $R(n)$ introduced recently is recalled. A quotient of this algebra by central elements, which we call the special Racah algebra $sR(n)$, is then introduced. Using results from classical invariant theory, this $sR(n)$ alg