ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-Reinforcement Learning Robust to Distributional Shift via Model Identification and Experience Relabeling

66   0   0.0 ( 0 )
 نشر من قبل Russell Mendonca
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement learning algorithms can acquire policies for complex tasks autonomously. However, the number of samples required to learn a diverse set of skills can be prohibitively large. While meta-reinforcement learning methods have enabled agents to leverage prior experience to adapt quickly to new tasks, their performance depends crucially on how close the new task is to the previously experienced tasks. Current approaches are either not able to extrapolate well, or can do so at the expense of requiring extremely large amounts of data for on-policy meta-training. In this work, we present model identification and experience relabeling (MIER), a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time. Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data, more easily than policies and value functions. These dynamics models can then be used to continue training policies and value functions for out-of-distribution tasks without using meta-reinforcement learning at all, by generating synthetic experience for the new task.

قيم البحث

اقرأ أيضاً

To improve the sample efficiency of policy-gradient based reinforcement learning algorithms, we propose implicit distributional actor-critic (IDAC) that consists of a distributional critic, built on two deep generator networks (DGNs), and a semi-impl icit actor (SIA), powered by a flexible policy distribution. We adopt a distributional perspective on the discounted cumulative return and model it with a state-action-dependent implicit distribution, which is approximated by the DGNs that take state-action pairs and random noises as their input. Moreover, we use the SIA to provide a semi-implicit policy distribution, which mixes the policy parameters with a reparameterizable distribution that is not constrained by an analytic density function. In this way, the policys marginal distribution is implicit, providing the potential to model complex properties such as covariance structure and skewness, but its parameter and entropy can still be estimated. We incorporate these features with an off-policy algorithm framework to solve problems with continuous action space and compare IDAC with state-of-the-art algorithms on representative OpenAI Gym environments. We observe that IDAC outperforms these baselines in most tasks. Python code is provided.
A significant challenge for the practical application of reinforcement learning in the real world is the need to specify an oracle reward function that correctly defines a task. Inverse reinforcement learning (IRL) seeks to avoid this challenge by in stead inferring a reward function from expert behavior. While appealing, it can be impractically expensive to collect datasets of demonstrations that cover the variation common in the real world (e.g. opening any type of door). Thus in practice, IRL must commonly be performed with only a limited set of demonstrations where it can be exceedingly difficult to unambiguously recover a reward function. In this work, we exploit the insight that demonstrations from other tasks can be used to constrain the set of possible reward functions by learning a prior that is specifically optimized for the ability to infer expressive reward functions from limited numbers of demonstrations. We demonstrate that our method can efficiently recover rewards from images for novel tasks and provide intuition as to how our approach is analogous to learning a prior.
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited. One exception is Rowland et al. (2018)s analysis of the C51 algorithm in terms of the Cramer distance, but th eir results only apply to the tabular setting and ignore C51s use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the models prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
125 - Lanqing Li , Rui Yang , Dijun Luo 2020
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks without any interactions with the environments, making RL truly practical in many real-w orld applications. This problem is still not fully understood, for which two major challenges need to be addressed. First, offline RL usually suffers from bootstrapping errors of out-of-distribution state-actions which leads to divergence of value functions. Second, meta-RL requires efficient and robust task inference learned jointly with control policy. In this work, we enforce behavior regularization on learned policy as a general approach to offline RL, combined with a deterministic context encoder for efficient task inference. We propose a novel negative-power distance metric on bounded context embedding space, whose gradients propagation is detached from the Bellman backup. We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches involving meta-RL and distance metric learning. To the best of our knowledge, our method is the first model-free and end-to-end OMRL algorithm, which is computationally efficient and demonstrated to outperform prior algorithms on several meta-RL benchmarks.
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents. Leveraging the powerful Stochastic Gradient Langevin Dynamics, we present a novel, scalable two-player RL algorithm, which is a sampling variant of the two-player policy gradient method. Our algorithm consistently outperforms existing baselines, in terms of generalization across different training and testing conditions, on several MuJoCo environments. Our experiments also show that, even for objective functions that entirely ignore potential environmental shifts, our sampling approach remains highly robust in comparison to standard RL algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا