ﻻ يوجد ملخص باللغة العربية
Reinforcement learning algorithms can acquire policies for complex tasks autonomously. However, the number of samples required to learn a diverse set of skills can be prohibitively large. While meta-reinforcement learning methods have enabled agents to leverage prior experience to adapt quickly to new tasks, their performance depends crucially on how close the new task is to the previously experienced tasks. Current approaches are either not able to extrapolate well, or can do so at the expense of requiring extremely large amounts of data for on-policy meta-training. In this work, we present model identification and experience relabeling (MIER), a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time. Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data, more easily than policies and value functions. These dynamics models can then be used to continue training policies and value functions for out-of-distribution tasks without using meta-reinforcement learning at all, by generating synthetic experience for the new task.
To improve the sample efficiency of policy-gradient based reinforcement learning algorithms, we propose implicit distributional actor-critic (IDAC) that consists of a distributional critic, built on two deep generator networks (DGNs), and a semi-impl
A significant challenge for the practical application of reinforcement learning in the real world is the need to specify an oracle reward function that correctly defines a task. Inverse reinforcement learning (IRL) seeks to avoid this challenge by in
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited. One exception is Rowland et al. (2018)s analysis of the C51 algorithm in terms of the Cramer distance, but th
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks without any interactions with the environments, making RL truly practical in many real-w
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents. Leveraging the powerful Stochastic Gradient Langevin Dynamics, we present a novel, scalable two-player RL algorithm, which is a