ﻻ يوجد ملخص باللغة العربية
We prove the Mumford--Tate conjecture for those abelian varieties over number fields whose extensions to C have attached adjoint Shimura varieties that are products of simple, adjoint Shimura varieties of certain Shimura types. In particular, we prove the conjecture for the orthogonal case (i.e., for the $B_n$ and $D_n^R$ Shimura types). As a main tool, we construct embeddings of Shimura varieties (whose adjoints are) of prescribed abelian type into unitary Shimura varieties of PEL type. These constructions implicitly classify the adjoints of Shimura varieties of PEL type.
Let $F$ be a totally real field in which a fixed prime $p$ is inert, and let $E$ be a CM extension of $F$ in which $p$ splits. We fix two positive integers $r,s in mathbb N$. We investigate the Tate conjecture on the special fiber of $G(U(r,s) times
Let $F$ be a totally real field in which a prime number $p>2$ is inert. We continue the study of the (generalized) Goren--Oort strata on quaternionic Shimura varieties over finite extensions of $mathbb F_p$. We prove that, when the dimension of the q
The Hecke orbit conjecture asserts that every prime-to-$p$ Hecke orbit in a Shimura variety is dense in the central leaf containing it. In this paper, we prove the conjecture for certain irreducible components of Newton strata in Shimura varieties of
We prove the isogeny property for special fibres of integral canonical models of compact Shimura varieties of $A_n$, $B_n$, $C_n$, and $D_n^{dbR}$ type. The approach used also shows that many crystalline cycles on abelian varieties over finite fields
The integral model of a GU(n-1,1) Shimura variety carries a universal abelian scheme over it, and the dual top exterior power of its Lie algebra carries a natural hermitian metric. We express the arithmetic volume of this metrized line bundle, define