ترغب بنشر مسار تعليمي؟ اضغط هنا

CAST: A Correlation-based Adaptive Spectral Clustering Algorithm on Multi-scale Data

87   0   0.0 ( 0 )
 نشر من قبل Xiang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of applying spectral clustering to cluster multi-scale data, which is data whose clusters are of various sizes and densities. Traditional spectral clustering techniques discover clusters by processing a similarity matrix that reflects the proximity of objects. For multi-scale data, distance-based similarity is not effective because objects of a sparse cluster could be far apart while those of a dense cluster have to be sufficiently close. Following [16], we solve the problem of spectral clustering on multi-scale data by integrating the concept of objects reachability similarity with a given distance-based similarity to derive an objects coefficient matrix. We propose the algorithm CAST that applies trace Lasso to regularize the coefficient matrix. We prove that the resulting coefficient matrix has the grouping effect and that it exhibits sparsity. We show that these two characteristics imply very effective spectral clustering. We evaluate CAST and 10 other clustering methods on a wide range of datasets w.r.t. various measures. Experimental results show that CAST provides excellent performance and is highly robust across test cases of multi-scale data.

قيم البحث

اقرأ أيضاً

Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a data set are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each players expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
We introduce a modified model of random walk, and then develop two novel clustering algorithms based on it. In the algorithms, each data point in a dataset is considered as a particle which can move at random in space according to the preset rules in the modified model. Further, this data point may be also viewed as a local control subsystem, in which the controller adjusts its transition probability vector in terms of the feedbacks of all data points, and then its transition direction is identified by an event-generating function. Finally, the positions of all data points are updated. As they move in space, data points collect gradually and some separating parts emerge among them automatically. As a consequence, data points that belong to the same class are located at a same position, whereas those that belong to different classes are away from one another. Moreover, the experimental results have demonstrated that data points in the test datasets are clustered reasonably and efficiently, and the comparison with other algorithms also provides an indication of the effectiveness of the proposed algorithms.
154 - Jianguo Chen , Philip S. Yu 2019
As one type of efficient unsupervised learning methods, clustering algorithms have been widely used in data mining and knowledge discovery with noticeable advantages. However, clustering algorithms based on density peak have limited clustering effect on data with varying density distribution (VDD), equilibrium distribution (ED), and multiple domain-density maximums (MDDM), leading to the problems of sparse cluster loss and cluster fragmentation. To address these problems, we propose a Domain-Adaptive Density Clustering (DADC) algorithm, which consists of three steps: domain-adaptive density measurement, cluster center self-identification, and cluster self-ensemble. For data with VDD features, clusters in sparse regions are often neglected by using uniform density peak thresholds, which results in the loss of sparse clusters. We define a domain-adaptive density measurement method based on K-Nearest Neighbors (KNN) to adaptively detect the density peaks of different density regions. We treat each data point and its KNN neighborhood as a subgroup to better reflect its density distribution in a domain view. In addition, for data with ED or MDDM features, a large number of density peaks with similar values can be identified, which results in cluster fragmentation. We propose a cluster center self-identification and cluster self-ensemble method to automatically extract the initial cluster centers and merge the fragmented clusters. Experimental results demonstrate that compared with other comparative algorithms, the proposed DADC algorithm can obtain more reasonable clustering results on data with VDD, ED and MDDM features. Benefitting from a few parameter requirements and non-iterative nature, DADC achieves low computational complexity and is suitable for large-scale data clustering.
Spectral clustering is one of the most popular clustering methods. However, how to balance the efficiency and effectiveness of the large-scale spectral clustering with limited computing resources has not been properly solved for a long time. In this paper, we propose a divide-and-conquer based large-scale spectral clustering method to strike a good balance between efficiency and effectiveness. In the proposed method, a divide-and-conquer based landmark selection algorithm and a novel approximate similarity matrix approach are designed to construct a sparse similarity matrix within extremely low cost. Then clustering results can be computed quickly through a bipartite graph partition process. The proposed method achieves the lower computational complexity than most existing large-scale spectral clustering. Experimental results on ten large-scale datasets have demonstrated the efficiency and effectiveness of the proposed methods. The MATLAB code of the proposed method and experimental datasets are available at https://github.com/Li-Hongmin/MyPaperWithCode.
The enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum random walk (QRW) with the problem of data clustering, and develop two clustering algorithms based on the one dimensional QRW. T hen, the probability distributions on the positions induced by QRW in these algorithms are investigated, which also indicates the possibility of obtaining better results. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms are of fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا