ﻻ يوجد ملخص باللغة العربية
We initiate the study of random iteration of automorphisms of real and complex projective surfaces, or more generally compact K{a}hler surfaces, focusing on the fundamental problem of classification of stationary measures. We show that, in a number of cases, such stationary measures are invariant, and provide criteria for uniqueness, smoothness and rigidity of invariant probability measures. This involves a variety of tools from complex and algebraic geometry, random products of matrices, non-uniform hyperbolicity, as well as recent results of Brown and Rodriguez Hertz on random iteration of surface diffeomorphisms.
Let ${mathcal B}_g(r)$ be the moduli space of triples of the form $(X,, K^{1/2}_X,, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g, geq, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector bundle
This article investigates the subject of rigid compact complex manifolds. First of all we investigate the different notions of rigidity (local rigidity, global rigidity, infinitesimal rigidity, etale rigidity and strong rigidity) and the relations am
We construct a compactification $M^{mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $gam
We bound the genus of a projective curve lying on a complete intersection surface in terms of its degree and the degrees of the defining equations of the surface on which it lies.
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul