ﻻ يوجد ملخص باللغة العربية
We construct a compactification $M^{mu ss}$ of the Uhlenbeck-Donaldson type for the moduli space of slope stable framed bundles. This is a kind of a moduli space of slope semistable framed sheaves. We show that there exists a projective morphism $gamma colon M^{ss} to M^{mu ss}$, where $M^{ss}$ is the moduli space of S-equivalence classes of Gieseker-semistable framed sheaves. The space $M^{mu ss}$ has a natural set-theoretic stratification which allows one, via a Hitchin-Kobayashi correspondence, to compare it with the moduli spaces of framed ideal instantons.
We study the moduli space of framed flags of sheaves on the projective plane via an adaptation of the ADHM construction of framed sheaves. In particular, we prove that, for certain values of the topological invariants, the moduli space of framed flag
We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definit
In this paper, we prove a singular version of the Donaldson-Uhlenbeck-Yau theorem over normal projective varieties and normal complex subvarieties of compact Kahler manifolds that are smooth outside a codimension three analytic subset. As a consequen
The conjectural equivalence of curve counting on Calabi-Yau 3-folds via stable maps and stable pairs is discussed. By considering Calabi-Yau 3-folds with K3 fibrations, the correspondence naturally connects curve and sheaf counting on K3 surfaces. Ne
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with