ﻻ يوجد ملخص باللغة العربية
The low-lying states of graphene contain exciting topological properties that depend on the interplay of different symmetry breaking terms. The corresponding energy gaps remained unexplored until recently, owing to the low energy scale of the terms involved (few tens of ueV). These low energy terms include sublattice splitting, the Rashba and the intrinsic spin-orbit coupling, whose balance determines the topological properties. In this work, we unravel the contributions arising from the sublattice and the intrinsic spin orbit splitting in graphene on hexagonal boron-nitride. Employing resistively-detected electron spin resonance, we measure a sublattice splitting of the order of 20E-6 eV, and confirm an intrinsic spin orbit coupling of approximately 45E-6 eV. The dominance of the latter suggests a topologically non-trivial state, involving fascinating properties. Electron spin resonance is a promising route towards unveiling the intriguing band structure at low energy scales.
Kondo physics in doped monolayer graphene is predicted to exhibit unusual features due to the linear vanishing of the pristine materials density of states at the Dirac point. Despite several attempts, conclusive experimental observation of the phenom
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN subst
Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subt
Atomic collapse can be observed in graphene because of its large effective fine structure constant, which enables this phenomenon to occur for an impurity charge as low as $Z_csim 1-2$. Here, we investigate the effect of the sublattice symmetry on mo
The specific rotational alignment of two-dimensional lattices results in a moire superlattice with a larger period than the original lattices and allows one to engineer the electronic band structure of such materials. So far, transport signatures of