ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular collapse in graphene: sublattice symmetry effect

83   0   0.0 ( 0 )
 نشر من قبل Jing Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic collapse can be observed in graphene because of its large effective fine structure constant, which enables this phenomenon to occur for an impurity charge as low as $Z_csim 1-2$. Here, we investigate the effect of the sublattice symmetry on molecular collapse in two spatially separated charge tunable vacancies, that are located on the same (A-A type) or different (A-B type) sublattices. We find that the broken sublattice symmetry: (1) does not affect the location of the main bonding and anti-bonding molecular collapse peaks, (2) but shifts the position of the satellite peaks, because they are a consequence of the breaking of the local sublattice symmetry, and (3) there are vacancy characteristic collapse peaks that only occur for A-B type vacancies, which can be employed to distinguish them experimentally from the A-A type. As the charge, energy, and separation distance increase, the additional collapse features merge with the main molecular collapse peaks. We show that the spatial distribution around the vacancy site of the collapse states allows us to differentiate the molecular from the frustrated collapse.



قيم البحث

اقرأ أيضاً

Kondo physics in doped monolayer graphene is predicted to exhibit unusual features due to the linear vanishing of the pristine materials density of states at the Dirac point. Despite several attempts, conclusive experimental observation of the phenom enon remains elusive. One likely obstacle to identification is a very small Kondo temperature scale $T_K$ in situations where the chemical potential lies near the Dirac point. We propose tailored mechanical deformations of monolayer graphene as a means of revealing unique fingerprints of the Kondo effect. Inhomogeneous strains are known to produce specific alternating changes in the local density of states (LDOS) away from the Dirac point that signal sublattice symmetry breaking effects. Small LDOS changes can be amplified in an exponential increase or decrease of $T_K$ for magnetic impurities attached at different locations. We illustrate this behavior in two deformation geometries: a circular bubble and a long fold, both described by Gaussian displacement profiles. We calculate the LDOS changes for modest strains and analyze the relevant Anderson impurity model describing a magnetic atom adsorbed in either a top-site or a hollow-site configuration. Numerical renormalization-group solutions of the impurity model suggest that higher expected $T_K$ values, combined with distinctive spatial patterns under variation of the point of graphene attachment, make the top-site configuration the more promising for experimental observation of signatures of the Kondo effect. The strong strain sensitivity of $T_K$ may lift top-site Kondo physics into the range experimentally accessible using local probes such as scanning tunneling microscopy.
The low-lying states of graphene contain exciting topological properties that depend on the interplay of different symmetry breaking terms. The corresponding energy gaps remained unexplored until recently, owing to the low energy scale of the terms i nvolved (few tens of ueV). These low energy terms include sublattice splitting, the Rashba and the intrinsic spin-orbit coupling, whose balance determines the topological properties. In this work, we unravel the contributions arising from the sublattice and the intrinsic spin orbit splitting in graphene on hexagonal boron-nitride. Employing resistively-detected electron spin resonance, we measure a sublattice splitting of the order of 20E-6 eV, and confirm an intrinsic spin orbit coupling of approximately 45E-6 eV. The dominance of the latter suggests a topologically non-trivial state, involving fascinating properties. Electron spin resonance is a promising route towards unveiling the intriguing band structure at low energy scales.
We report the experimental observation of sublattice-resolved resonant scattering in bilayer graphene by performing simultaneous cryogenic atomic hydrogen doping and electron transport measurements in ultrahigh vacuum. This allows us to monitor the h ydrogen adsorption on the different sublattices of bilayer graphene without atomic-scale microscopy. Specifically, we detect two distinct resonant scattering peaks in the gate-dependent resistance, which evolve as a function of atomic hydrogen dosage. Theoretical calculations show that one of the peaks originates from resonant scattering by hydrogen adatoms on the {alpha}-sublattice (dimer site) while the other originates from hydrogen adatoms on the b{eta}-sublattice (non-dimer site), thereby enabling a method for characterizing the relative sublattice occupancy via transport measurements. Utilizing this new capability, we investigate the adsorption and thermal desorption of hydrogen adatoms via controlled annealing and conclude that hydrogen adsorption on the b{eta}-sublattice is energetically favored. Through site-selective desorption from the {alpha}-sublattice, we realize hydrogen doping with adatoms primarily on a single sublattice, which is highly desired for generating ferromagnetism.
The spatial arrangement of adsorbates deposited onto a clean surface in vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors exhibit reve rsible, electrically-tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. The gate-tunable molecular concentration can be explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. Molecular surface concentration in this case is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.
We study magnetoplasmons or neutral collective excitations of graphene in a strong perpendicular magnetic field, which can be modelled as bound electron-hole pairs. The SU(4) symmetry of graphene arising from spin and valley pseudospin degrees of fre edom is explored using Young diagrams to correctly predict the degeneracies of these excitations. The multiplet structure of the states is identical to that of mesons composed of first and second generation quarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا