ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-Duplex MIMO Systems with Hardware Limitations and Imperfect Channel Estimation

72   0   0.0 ( 0 )
 نشر من قبل Hiroki Iimori
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a bidirectional in-band full-duplex (FD) multiple-input multiple-output (MIMO) system subject to imperfect channel state information (CSI), hardware distortion, and limited analog cancellation capability as well as the self-interference (SI) power requirement at the receiver analog domain so as to avoid the saturation of low noise amplifier (LNA). A novel minimum mean square error (MMSE)-based joint design of digital precoder and combiner for SI cancellation is offered, which combines the well-known gradient projection method and non-monotonicity considered in recent machine-learning literature in order to tackle the non-convexity of the optimization problem formulated in this article. Simulation results illustrate the effectiveness of the proposed SI cancellation algorithm.

قيم البحث

اقرأ أيضاً

In this paper, we study Simultaneous Communication of Data and Control (SCDC) information signals in Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) wireless systems. In particular, considering an FD MIMO base station serving multiple single-a ntenna FD users, a novel multi-user communication scheme for simultaneous DownLink (DL) beamformed data transmission and UpLink (UL) pilot-assisted channel estimation is presented. Capitalizing on a recent FD MIMO hardware architecture with reduced complexity self-interference analog cancellation, we jointly design the base stations transmit and receive beamforming matrices as well as the settings for the multiple analog taps and the digital SI canceller with the objective to maximize the DL sum rate. Our simulation results showcase that the proposed approach outperforms its conventional half duplex counterpart with 50% reduction in hardware complexity compared to the latest FD-based SCDC schemes.
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receiv e beamforming with reduced complexity multi-tap analog Self-Interference (SI) cancellation, we propose a novel transmission scheme exploiting channel reciprocity for joint downlink beamformed information data communication and uplink channel estimation through training data transmission. We adopt a general model for pilot-assisted channel estimation and present a unified optimization framework for all involved FD MIMO design parameters. Our representative Monte Carlo simulation results for an example algorithmic solution for the beamformers as well as for the analog and digital SI cancellation demonstrate that the proposed FD-based joint communication and control scheme provides 1.4x the downlink rate of its half duplex counterpart. This performance improvement is achieved with 50% reduction in the hardware complexity for the analog canceller than conventional FD MIMO architectures with fully connected analog cancellation.
89 - Jisheng Dai , An Liu , 2018
This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we e xploit additional common sparsity among nearby users. In the literature, a commonly used group sparsity model assumes that users in each group share a uniform sparsity pattern. In practice, however, this oversimplified assumption usually fails to hold, even for physically close users. Outliers deviated from the uniform sparsity pattern in each group may significantly degrade the effectiveness of common sparsity, and hence bring limited (or negative) gain for channel estimation. To better capture the group sparse structure in practice, we provide a general model having two sparsity components: commonly shared sparsity and individual sparsity, where the additional individual sparsity accounts for any outliers. Then, we propose a novel sparse Bayesian learning (SBL)-based framework to address the joint channel estimation and user grouping problem under the general sparsity model. The framework can fully exploit the common sparsity among nearby users and exclude the harmful effect from outliers simultaneously. Simulation results reveal substantial performance gains over the existing state-of-the-art baselines.
This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution ADCs at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to perform simple maximum-ratio combining/maximum-ratio transmission processing by the relay. Also, it is assumed that the destinations use statistical CSI to decode the transmitted signals. Exact and approximated closed-form expressions for the achievable sum rate are presented, which enable the efficient evaluation of the impact of key system parameters on the system performance. In addition, optimal relay power allocation scheme is studied, and power scaling law is characterized. It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization. However, it becomes ineffective to handle the detrimental effect of low-resolution ADCs at the destination. Moreover, it is shown that deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to $1/M$ to maintain a constant rate, where $M$ is the number of relay antennas.
Channel estimation is of crucial importance in massive multiple-input multiple-output (m-MIMO) visible light communication (VLC) systems. In order to tackle this problem, a fast and flexible denoising convolutional neural network (FFDNet)-based chann el estimation scheme for m-MIMO VLC systems was proposed. The channel matrix of the m-MIMO VLC channel is identified as a two-dimensional natural image since the channel has the characteristic of sparsity. A deep learning-enabled image denoising network FFDNet is exploited to learn from a large number of training data and to estimate the m-MIMO VLC channel. Simulation results demonstrate that our proposed channel estimation based on the FFDNet significantly outperforms the benchmark scheme based on minimum mean square error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا