ﻻ يوجد ملخص باللغة العربية
Two-dimensional Ruddlesden-Popper hybrid lead halide perovskites have become a major topic in perovskite optoelectronics. Here, we aim to unravel the ultrafast dynamics governing the evolution of charge carriers and excitons in these materials. Using a combination of ultrabroadband time-resolved THz (TRTS) and fluorescence upconversion spectroscopies, we find that sequential carrier cooling and exciton formation best explain the observed dynamics, where exciton-exciton interactions play an important role in the form of Auger heating and biexciton formation. We show that the presence of a longer-lived population of carriers is due to these processes and not to a Mott transition. Therefore, excitons still dominate at laser excitation densities. We use kinetic modeling to compare the phenethylammonium and butylammonium organic cations while investigating the stability of the resulting films. In addition, we demonstrate the capability of using ultrabroadband TRTS to study excitons in large binding energy semiconductors through spectral analysis at room temperature.
In recent years, metal halide perovskites have generated tremendous interest for optoelectronic applications and their underlying fundamental properties. Due to the large electron-phonon coupling characteristic of soft lattices, self-trapping phenome
Halide perovskites have emerged as disruptive semiconductors for applications including photovoltaics and light emitting devices, with modular optoelectronic properties realisable through composition and dimensionality tuning. Layered Ruddlesden-Popp
Mixing halides in metal halide perovskites (MHPs) is an effective approach to adjust MHPs bandgap for applications in tandem solar cells. However, mixed-halide (MH-) MHPs undergo light-induced-phase-segregation (LIPS) under continuous illumination. T
The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thi
The vibrational modes in organic/inorganic layered perovskites are of fundamental importance for their optoelectronic properties. The hierarchical architecture of the Ruddlesden-Popper phase of these materials allows for distinct directionality of th