ترغب بنشر مسار تعليمي؟ اضغط هنا

Superior Photo-carrier Diffusion Dynamics in Organic-inorganic Hybrid Perovskites Revealed by Spatiotemporal Conductivity Imaging

528   0   0.0 ( 0 )
 نشر من قبل Xuejian Ma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The outstanding performance of organic-inorganic metal trihalide solar cells benefits from the exceptional photo-physical properties of both electrons and holes in the material. Here, we directly probe the free-carrier dynamics in Cs-doped FAPbI3 thin films by spatiotemporal photoconductivity imaging. Using charge transport layers to selectively quench one type of carriers, we show that the two relaxation times on the order of 1 microsecond and 10 microseconds correspond to the lifetimes of electrons and holes in FACsPbI3, respectively. Strikingly, the diffusion mapping indicates that the difference in electron/hole lifetimes is largely compensated by their disparate mobility. Consequently, the long diffusion lengths (3 ~ 5 micrometers) of both carriers are comparable to each other, a feature closely related to the unique charge trapping and de-trapping processes in hybrid trihalide perovskites. Our results unveil the origin of superior diffusion dynamics in this material, crucially important for solar-cell applications.

قيم البحث

اقرأ أيضاً

The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to an enhanced photoconduction, a complicated process involving charge generation and recombination in the time domain and carrier transport in the spatial domain. Here, we report the simultaneous spatial and temporal photoconductivity imaging in two types of WS2 monolayers by laser-illuminated microwave impedance microscopy. The diffusion length and carrier lifetime were directly extracted from the spatial profile and temporal relaxation of microwave signals respectively. Time-resolved experiments indicate that the critical process for photo-excited carriers is the escape of holes from trap states, which prolongs the apparent lifetime of mobile electrons in the conduction band. As a result, counterintuitively, the photoconductivity is stronger in CVD samples than exfoliated monolayers with a lower defect density. Our work reveals the intrinsic time and length scales of electrical response to photo-excitation in van der Waals materials, which is essential for their applications in novel optoelectronic devices.
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementar y measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.
For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrie r states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components.
The previously developed bistable amphoteric native defect (BAND) model is used for a comprehensive explanation of the unique photophysical properties and for understanding the remarkable performance of perovskites as photovoltaic materials. It is sh own that the amphoteric defects in donor (acceptor) configuration capture a fraction of photoexcited electrons (holes) dividing them into two groups: higher energy bright and lower energy dark electrons (holes). The spatial separation of the dark electrons and the dark holes and the k-space separation of the bright and the dark charge carriers reduce electron hole recombination rates, emulating the properties of an ideal photovoltaic material with a balanced, spatially separated transport of electrons and holes. The BAND model also offers a straightforward explanation for the exceptional insensitivity of the photovoltaic performance of polycrystalline perovskite films to structural and optical inhomogeneities. The blue-shifted radiative recombination of bright electrons and holes results in a large anti-Stokes effect that provides a quantitative explanation for the spectral dependence of the laser cooling effect measured in perovskite platelets.
Van der Waals materials exhibit naturally passivated surfaces and can form versatile heterostructures, enabling observation of carrier transport mechanisms not seen in three-dimensional materials. Here we report observation of a band bending junction , a new type of semiconductor homojunction whose surface potential landscape depends solely on a difference in thickness between the two semiconductor regions atop a buried heterojunction interface. Using MoS2 on Au to form a buried heterojunction interface, we find that lateral surface potential differences can arise in MoS2 from the local extent of vertical band bending in thin and thick MoS2 regions. Using scanning ultrafast electron microscopy, we examine the spatiotemporal dynamics of photogenerated charge carriers and find that lateral carrier separation is enabled by a band bending junction, which is confirmed with semiconductor transport simulations. Band bending junctions may therefore enable new electronic and optoelectronic devices in Van der Waals materials that rely on thickness variations rather than doping to separate charge carriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا