ﻻ يوجد ملخص باللغة العربية
In this work, we investigate the transport phenomena in compound semiconductor material based buried channel Quantum Well MOSFET with a view to developing a simple and effective model for the device current. Device simulation has been performed in quantum ballistic regime using non-equilibrium Greens function (NEGF) formalism. The simulated current voltage characteristics using a novel concept of effective transmission coefficient has been found to define the reported experimental data with high accuracy. The proposed model has also been effective to capture the transport characteristics reported for other compound semiconductor material based field effect transistors. The concept of the proposed effective transmission coefficient and hence the model lends itself to be a simple and powerful device analysis tool which can be extensively used to predict the performance of a wide variety of compound semiconductor devices in the pre fabrication stage. It has also demonstrated consistency with device characteristics for doping concentration and channel length scaling. Thus the model can help the device or process engineers to tune the devices for the best possible performance.
The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence effici
A fitting model is developed for accounting the asymmetric ambipolarities in the I-V characteristics of graphene field-effect transistors (G-FETs) with doped channels, originating from the thermionic emission and interband tunneling at the junctions
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy
The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field effect transistors, can be as adverse as the contact resistance itself, bu
We report the capability to simulate in a quantum mechanical tight-binding (TB) atomistic fashion NW devices featuring several hundred to millions of atoms and diameter up to 18 nm. Such simulations go far beyond what is typically affordable with tod