ﻻ يوجد ملخص باللغة العربية
Ag nanorod arrays/dielectrics/mirror-structured multilayer thin-film are well known, highly sensitive surface-enhanced Raman scattering (SERS) substrates that enhance the Raman scattering cross-section by the interference of light. However, extracting biomarkers directly from human skin using these solid substrates is difficult. To overcome this problem, we propose a multilayer thin-film flake dispersion gel by centrifugal mixing of the multilayer thin-film and hydroxyethyl cellulose (HEC) gel. The multilayer thin-film was prepared by serial bideposition using the dynamic oblique angle deposition technique. The mixing process was optimized to obtain flakes of ~10 {mu}m so that the optical properties of the multilayer film can be preserved, and there is no risk of adverse effects on humans. The SERS features of the flakes dispersion gel were tested using 4, 4-bipyridine (BPY). The BPY molecules diffused through the highly porous gel within a few seconds, generating significant SERS signals. The multilayer film flakes dispersion gel showed a SERS signal about 20 times better than the gel-dispersed Ag nanorod arrays without a multilayer film structure. These SERS active flakes dispersion gel can be used directly on the skin surface to collect body fluids from sweat, for biomarker sensing.
The programmable assembly of DNA strands is a promising tool for building tailored bottom-up nanostructures. Here, we present a plasmonic nanosystem obtained by the base-pairing mediated aggregation of gold nanoparticles (NPs) which are separately fu
Spectroscopic analysis of large biomolecules is critical in a number of applications, including medical diagnostics and label-free biosensing. Recently, it has been shown that Raman spectroscopy of proteins can be used to diagnose some diseases, incl
Surface enhanced Raman spectroscopy (SERS) is a precise and non-invasive analytical technique that is widely used in chemical analysis, environmental protection, food processing, pharmaceutics, and diagnostic biology. However, it is still a challenge
Discovering and optimizing commercially viable materials for clean energy applications typically takes over a decade. Self-driving laboratories that iteratively design, execute, and learn from material science experiments in a fully autonomous loop p
Fabricating high-performance and/or high-density flexible electronics on plastic substrates is often limited by the poor dimensional stability of polymer substrates. This can be mitigated by using glass carriers during fabrication, but removing the p