ترغب بنشر مسار تعليمي؟ اضغط هنا

NIR Counterparts to ULXs (III): Completing the photometric survey and selected spectroscopic results

286   0   0.0 ( 0 )
 نشر من قبل Kristhell Marisol L\\'opez M.Sc.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from the remaining sources in our search for near-infrared (NIR) candidate counterparts to ultraluminous X-ray sources (ULXs) within $simeq$ 10 Mpc. We observed 23 ULXs in 15 galaxies and detected NIR candidate counterparts to six of them. Two of these have an absolute magnitude consistent with a single red supergiant (RSG). Three counterparts are too bright for a RSG and spatially extended, and thus we classify them as stellar clusters. The other candidate is too faint for a RSG. Additionally, we present the results of our NIR spectroscopic follow-up of five sources: four originally classified as RSG and one as a stellar cluster on the basis of previous photometry. The stellar cluster candidate is actually a nebula. Of the four RSGs candidates, one source has a broad H$alpha$ emission line redshifted by $sim z = 1$, making it a background AGN. Two other sources show stellar spectra consistent with them being RSGs. The final RSG candidate is too faint to classify, but does not show strong (nebular) emission lines in its spectrum. After our search for NIR counterparts to 113 ULXs, where we detected a candidate counterpart for 38 ULXs, we have spectroscopically confirmed the nature of 12: five sources are nebulae, one source is not classified, one source is an AGN and five are RSGs. These possible five ULX-RSG binary systems would constitute $simeq$ $(4 pm 2)%$ of the observed ULXs, a fraction almost four times larger than what was predicted by binary evolution simulations.



قيم البحث

اقرأ أيضاً

76 - A. Cimatti 2002
The K20 survey is an ESO VLT optical and near-infrared spectroscopic survey aimed at obtaining spectral information and redshifts of a complete sample of about 550 objects to K_sleq20.0 over two independent fields with a total area of 52 arcmin^2. In this paper we discuss the scientific motivation of such a survey, we describe the photometric and spectroscopic properties of the sample, and we release the $K_s$-band photometric catalog. Extensive simulations showed that the sample is photometrically highly complete to K_s=20. The observed galaxy counts and the R-K_s color distribution are consistent with literature results. We observed spectroscopically 94% of the sample, reaching a spectroscopic redshift identification completeness of 92% to K_sleq20.0 for the observed targets, and of 87% for the whole sample (i.e. counting also the unobserved targets). Deep spectroscopy was complemented with multi-band deep imaging in order to derive tested and reliable photometric redshifts for the galaxies lacking spectroscopic redshifts. The results show a very good agreement between the spectroscopic and the photometric redshifts with <z_{spe}-z_{phot}>=0.01 and with a dispersion of sigma_{Delta z}=0.09. Using both the spectroscopic and the photometric redshifts, we reached an overall redshift completeness of about 98%. The size of the sample, the redshift completeness, the availability of high quality photometric redshifts and multicolor spectral energy distributions make the K20 survey database one of the most complete samples available to date for constraining the currently competing scenarios of galaxy formation and for a variety of other galaxy evolution studies.
We present optical nuclear spectra for nine 3CR radio sources obtained with the Telescopio Nazionale Galileo, that complete our spectroscopic observations of the sample up to redshifts $<$ 0.3. We measure emission line luminosities and ratios, and de rive a spectroscopic classification for these sources.
70 - S.A. Macfarlane 2016
We present photometric and spectroscopic follow-up observations of short-period variables discovered in the OmegaWhite survey: a wide-field high-cadence g-band synoptic survey targeting the Galactic Plane. We have used fast photometry on the SAAO 1.0 -m and 1.9-m telescopes to obtain light curves of 27 variables, and use these results to validate the period and amplitude estimates from the OmegaWhite processing pipeline. Furthermore, 57 sources (44 unique, 13 also with new light curves) were selected for spectroscopic follow-up using either the SAAO 1.9-m telescope or the Southern African Large Telescope. We find many of these variables have spectra which are consistent with being delta Scuti type pulsating stars. At higher amplitudes, we detect four possible pulsating white dwarf/subdwarf sources and an eclipsing cataclysmic variable. Due to their rarity, these targets are ideal candidates for detailed follow-up studies. From spectroscopy, we confirm the symbiotic binary star nature of two variables identified as such in the SIMBAD database. We also report what could possibly be the first detection of the `Bump Cepheid phenomena in a delta Scuti star, with OW J175848.21-271653.7 showing a pronounced 22% amplitude dip lasting 3 minutes during each pulsational cycle peak. However, the precise nature of this target is still uncertain as it exhibits the spectral features of a B-type star.
We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an SDSS-IV eBOSS subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (var iable stars and AGN) across 7,500 square degrees selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate (KDE) analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4,000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as LSST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا