ﻻ يوجد ملخص باللغة العربية
We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an SDSS-IV eBOSS subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and AGN) across 7,500 square degrees selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate (KDE) analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4,000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as LSST.
As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectro
The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ~220,000 optically-variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a prev
We present a detailed analysis of the selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). LSS-GAC was designed to obtain low resolution optical spectra for a sample of more than 3 million stars in the Galactic
From Oct. 2019 to Apr. 2020, LAMOST performs a time-domain spectroscopic survey of four $K$2 plates with both low- and med-resolution observations. The low-resolution spectroscopic survey gains 282 exposures ($approx$46.6 hours) over 25 nights, yield
Dwarf carbon (dC) stars, main sequence stars showing carbon molecular bands, were initially thought to be an oxymoron since only AGB stars dredge carbon into their atmospheres. Mass transfer from a former AGB companion that has since faded to a white