ﻻ يوجد ملخص باللغة العربية
Nodal line semimetals in two-dimensional (2-D) materials have attracted intense attention currently. From fundamental physics and spintronic applications points of view, high Curie temperature ferromagnetic (FM) ones with nodal lines robust against spin-orbit coupling (SOC) are significantly in desirable. Here, we propose that FM K2N monolayer is such Weyl nodal line semimetal. We show that K2N monolayer is dynamically stable, and has a FM ground magnetic state with the out-of-plane [001] magnetization. It shows two nodal lines in the low-energy band structures. Both nodal lines are robust against SOC, under the protection of mirror symmetry. We construct an effective Hamiltonian, which can well characterize the nodal lines in the system. Remarkably, the nodal line semimetal proposed here is distinct from the previously studied ones in that K2N monolayer is 2-D d0-type ferromagnet with the magnetism arising from the partially filled N-p orbitals, which can bring special advantages in spintronic applications. Besides, the Curie temperature in K2N monolayer is estimated to be 942K, being significantly higher than previous FM nodal lines materials. We also find that, specific tensile strains can transform the nodal line from type-I to a type-II one, making its nodal line characteristics even more interesting.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo
Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as lo
We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin
Three dimensional materials with strong spin-orbit coupling and magnetic interactions represent an opportunity to realize a variety of rare and potentially useful topological phases. In this work, we use first principles calculations to show that the
Exploring two-dimensional (2D) magnetic semiconductors with room temperature magnetic ordering and electrically controllable spin polarization is a highly desirable but challenging task for nanospintronics. Here, through first principles calculations