ﻻ يوجد ملخص باللغة العربية
Nonreciprocal devices that allow the light propagation in only one direction are indispensable in photonic circuits and emerging quantum technologies. Contemporary optical isolators and circulators, however, require large size or strong magnetic fields because of the general weakness of magnetic light-matter interactions, which hinders their integration into photonic circuits. Aiming at stronger magneto-optical couplings, a promising approach is to utilize nonlinear optical processes. Here, we demonstrate nonreciprocal magnetoelectric second harmonic generation (SHG) in CuB2O4. SHG transmission changes by almost 100% in a magnetic-field reversal of just 10 mT. The observed nonreciprocity results from an interference between the magnetic-dipole- and electric-dipole-type SHG. Even though the former is usually notoriously smaller than the latter, it is found that a resonantly enhanced magnetic-dipole-transition has a comparable amplitude as non-resonant electric-dipole-transition, leading to the near-perfect nonreciprocity. This mechanism could form one of the fundamental bases of nonreciprocity in multiferroics, which is transferable to a plethora of magnetoelectric systems to realize future nonreciprocal and nonlinear-optical devices.
Giant second-harmonic generation (SHG) in the terahertz (THz) frequency range is observed in a thin film of an s-wave superconductor NbN, where the time-reversal ($mathcal{T}$-) and space-inversion ($mathcal{P}$-) symmetries are simultaneously broken
Second harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide mo
The notion of spontaneous symmetry breaking has been used to describe phase transitions in a variety of physical systems. In crystalline solids, the breaking of certain symmetries, such as mirror symmetry, is difficult to detect unambiguously. Using
Strong second-harmonic generation has recently been experimentally observed from metamaterials consisting of periodic arrays of metal split ring resonators with an effective negative magnetic permeability [Science, 313, 502 (2006)]. To explore the un
Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is reg