ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization-Resolved Extreme Ultraviolet Second Harmonic Generation from LiNbO$_3$

250   0   0.0 ( 0 )
 نشر من قبل Michael Zuerch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Second harmonic generation (SHG) spectroscopy ubiquitously enables the investigation of surface chemistry, interfacial chemistry as well as symmetry properties in solids. Polarization-resolved SHG spectroscopy in the visible to infrared regime is regularly used to investigate electronic and magnetic orders through their angular anisotropies within the crystal structure. However, the increasing complexity of novel materials and emerging phenomena hamper the interpretation of experiments solely based on the investigation of hybridized valence states. Here, polarization-resolved SHG in the extreme ultraviolet (XUV-SHG) is demonstrated for the first time, enabling element-resolved angular anisotropy investigations. In non-centrosymmetric LiNbO$_3$, elemental contributions by lithium and niobium are clearly distinguished by energy dependent XUV-SHG measurements. This element-resolved and symmetry-sensitive experiment suggests that the displacement of Li ions in LiNbO$_3$, which is known to lead to ferroelectricity, is accompanied by distortions to the Nb ion environment that breaks the inversion symmetry of the NbO$_{6}$ octahedron as well. Our simulations show that the measured second harmonic spectrum is consistent with Li ion displacements from the centrosymmetric position by $sim$0.5 Angstrom while the Nb-O bonds are elongated/contracted by displacements of the O atoms by $sim$0.1 Angstrom. In addition, the polarization-resolved measurement of XUV-SHG shows excellent agreement with numerical predictions based on dipole-induced SHG commonly used in the optical wavelengths. This constitutes the first verification of the dipole-based SHG model in the XUV regime. The findings of this work pave the way for future angle and time-resolved XUV-SHG studies with elemental specificity in condensed matter systems.

قيم البحث

اقرأ أيضاً

Stacked atomically thin transition metal dichalcogenides (TMDs) exhibit fundamentally new physical properties compared to those of the individual layers. The twist angle between the layers plays a crucial role in tuning these properties. Having a too l that provides highresolution, large area mapping of the twist angle, would be of great importance in the characterization of such 2D structures. Here we use polarization-resolved second harmonic generation (P-SHG) imaging microscopy to rapidly map the twist angle in large areas of overlapping WS2 stacked layers. The robustness of our methodology lies in the combination of both intensity and polarization measurements of SHG in the overlapping region. This allows the accurate measurement and consequent pixel-by-pixel mapping of the twist angle in this area. For the specific case of 30o twist angle, P-SHG enables imaging of individual layers.
Strong second-harmonic generation has recently been experimentally observed from metamaterials consisting of periodic arrays of metal split ring resonators with an effective negative magnetic permeability [Science, 313, 502 (2006)]. To explore the un derlying physical mechanism, a classical model derived from microscopic theory is employed here. The quasi-free electrons inside the metal are approximated as a classical Coulomb-interacting electron gas, and their motion under the excitation of an external electromagnetic field is described by the cold-plasma wave equations. Through numerical simulations, it is demonstrated that the microscopic theory includes the dominant physical mechanisms bothqualitatively and quantitatively.
384 - L.E. Golub , S.A. Tarasenko 2014
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol arization in graphene is still a challenge. Here, we develop a theory of the second optical harmonic generation in graphene and show that this effect can be used to measure the degree and sign of the valley polarization. We show that, at the normal incidence of radiation, the second harmonic generation stems from imbalance of carrier populations in the valleys. The effect has a specific polarization dependence reflecting the trigonal symmetry of electron valley and is resonantly enhanced if the energy of incident photons is close to the Fermi energy.
Nonreciprocal devices that allow the light propagation in only one direction are indispensable in photonic circuits and emerging quantum technologies. Contemporary optical isolators and circulators, however, require large size or strong magnetic fiel ds because of the general weakness of magnetic light-matter interactions, which hinders their integration into photonic circuits. Aiming at stronger magneto-optical couplings, a promising approach is to utilize nonlinear optical processes. Here, we demonstrate nonreciprocal magnetoelectric second harmonic generation (SHG) in CuB2O4. SHG transmission changes by almost 100% in a magnetic-field reversal of just 10 mT. The observed nonreciprocity results from an interference between the magnetic-dipole- and electric-dipole-type SHG. Even though the former is usually notoriously smaller than the latter, it is found that a resonantly enhanced magnetic-dipole-transition has a comparable amplitude as non-resonant electric-dipole-transition, leading to the near-perfect nonreciprocity. This mechanism could form one of the fundamental bases of nonreciprocity in multiferroics, which is transferable to a plethora of magnetoelectric systems to realize future nonreciprocal and nonlinear-optical devices.
Second harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide mo nolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also inter-layer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا