ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin oscillations of neutrinos scattered off a rotating black hole

90   0   0.0 ( 0 )
 نشر من قبل Maxim Dvornikov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maxim Dvornikov




اسأل ChatGPT حول البحث

Spin oscillations of neutrinos, gravitationally scattered off a black hole (BH), are studied. The cases of nonrotating and rotating BHs are analyzed. We derive the analytic expressions for the transition and survival probabilities of spin oscillations when neutrinos interact with these gravitational backgrounds. The obtained transition probabilities depend on the impact parameter, as well as the neutrino energy and the particle mass. We find that there is a possibility of spin oscillations of ultrarelativistic neutrinos scattering off a rotating BH. Then, considering the neutrino scattering off BH surrounded by background matter, we derive the effective Schrodinger equation for spin oscillations. The numerical solution of this equation is obtained in the case of a supermassive BH with a realistic accretion disk. Spin effects turn out to be negligible in the neutrino scattering in the Schwarzschild metric. In the Kerr metric, we find that the observed neutrino fluxes can be reduced almost 10% because of spin oscillations when ultrarelativistic neutrinos experience gravitational scattering. The neutrino interaction with an accretion disk results in the additional modification of the intensities of outgoing neutrino fluxes. We consider the applications of the obtained results for the neutrino astronomy.

قيم البحث

اقرأ أيضاً

138 - Maxim Dvornikov 2021
We study the neutrino scattering off a rotating black hole with a realistic accretion disk permeated by an intrinsic magnetic field. Neutrino trajectories in curved spacetime as well as the particle spin evolution in dense matter of an accretion disk and in the magnetic field are accounted for exactly. We obtain the fluxes of outgoing ultrarelativistic neutrinos taking into account the change of the neutrino polarization owing to spin oscillations. Using the conservative value of the neutrino magnetic moment and realistic radial distributions of the matter density and the magnetic field strength, we get that these fluxes are reduced by several percent compared to the case when no spin oscillations are accounted for. In some situations, there are spikes in the neutrino fluxes because of the neutrino interaction with the rotating plasma of an accretion disk. Taking into account the uncertainties in the astrophysical neutrino fluxes, the predicted effects turn out to be quite small to be observed with the current neutrino telescopes.
Astrophysical observations of spinning BHs, which span $ 5M_odotlesssim M_{rm BH}lesssim 5times 10^8 M_odot$, can be used to exclude the existence of certain massive bosons via the superradiance phenomenon. In this work, we explore for the first time how these measurements can be used to constrain properties of statistical distributions for the masses of multiple bosonic fields. Quite generally, our methodology excludes $N_{rm ax}gtrsim 30$ scalar fields with a range of mass distribution widths and central values spanning many orders of magnitude. We demonstrate this for the specific example of axions in string theory and M-theory, where the mass distributions in certain cases take universal forms. We place upper bounds on $N_{rm ax}$ for certain scenarios of interest realised approximately as mass distributions in M-theory, including the QCD axion, grand unified theories, and fuzzy dark matter.
96 - Leong Khim Wong 2019
I present evidence of a novel guise of superradiance that arises in black hole binary spacetimes. Given the right initial conditions, a wave will be amplified as it scatters off the binary. This process, which extracts energy from the orbital motion, is driven by absorption across the horizons and is most pronounced when the individual black holes are not spinning. Focusing on real scalar fields, I demonstrate how modern effective field theory (EFT) techniques enable the computation of the superradiant amplification factor analytically when there exist large separations of scales. Although exploiting these hierarchies inevitably means that the amplification factor is always negligible (it is never larger than about one part in $10^{10}$) in the EFTs regime of validity, this work has interesting theoretical implications for our understanding of general relativity and lays the groundwork for future studies on superradiant phenomena in binary systems.
105 - Maxim Dvornikov 2019
We study spin oscillations of massive Dirac neutrinos in background matter, electromagnetic and gravitational fields. First, using the Dirac equation for a neutrino interacting with the external fields in curved spacetime, we rederive the quasiclassi cal equation for the neutrino spin evolution, which was proposed previously basing on principles of the general covariance. Then, we apply this result for the description of neutrino spin oscillations in nonmoving and unpolarized matter under the influence of a constant transverse magnetic field and a gravitational wave. We derive the effective Schrodinger equation for neutrino oscillations in these external fields and solve it numerically. Choosing realistic parameters of external fields, we show that the parametric resonance can take place in spin oscillations of low energy neutrinos. Some astrophysical applications are briefly discussed.
In the next few years Advanced LIGO (aLIGO) may see gravitational waves (GWs) from thousands of black hole (BH) mergers. This marks the beginning of a new precision tool for physics. Here we show how to search for new physics beyond the standard mode l using this tool, in particular the QCD axion in the mass range ma ~ 10^-14 to 10^-10 eV. Axions (or any bosons) in this mass range cause rapidly rotating BHs to shed their spin into a large cloud of axions in atomic Bohr orbits around the BH, through the effect of superradiance (SR). This results in a gap in the mass vs. spin distribution of BHs when the BH size is comparable to the axions Compton wavelength. By measuring the spin and mass of the merging objects observed at LIGO, we could verify the presence and shape of the gap in the BH distribution produced by the axion. The axion cloud can also be discovered through the GWs it radiates via axion annihilations or level transitions. A blind monochromatic GW search may reveal up to 10^5 BHs radiating through axion annihilations, at distinct frequencies within ~3% of $2 ma. Axion transitions probe heavier axions and may be observable in future GW observatories. The merger events are perfect candidates for a targeted GW search. If the final BH has high spin, a SR cloud may grow and emit monochromatic GWs from axion annihilations. We may observe the SR evolution in real time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا