ﻻ يوجد ملخص باللغة العربية
Vision-based monocular human pose estimation, as one of the most fundamental and challenging problems in computer vision, aims to obtain posture of the human body from input images or video sequences. The recent developments of deep learning techniques have been brought significant progress and remarkable breakthroughs in the field of human pose estimation. This survey extensively reviews the recent deep learning-based 2D and 3D human pose estimation methods published since 2014. This paper summarizes the challenges, main frameworks, benchmark datasets, evaluation metrics, performance comparison, and discusses some promising future research directions.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide ra
Estimation of the human pose from a monocular camera has been an emerging research topic in the computer vision community with many applications. Recently, benefited from the deep learning technologies, a significant amount of research efforts have g
The 3D pose estimation from a single image is a challenging problem due to depth ambiguity. One type of the previous methods lifts 2D joints, obtained by resorting to external 2D pose detectors, to the 3D space. However, this type of approaches disca
Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exis
In the presence of annotated data, deep human pose estimation networks yield impressive performance. Nevertheless, annotating new data is extremely time-consuming, particularly in real-world conditions. Here, we address this by leveraging contrastive