ﻻ يوجد ملخص باللغة العربية
Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer part of the disc ($R> 1$ AU). They also potentially lead to self-organisation of the disc into large-scale axisymmetric structures, similar to the rings recently imaged by sub-millimetre or near-infrared instruments (ALMA and SPHERE). The aim of this paper is to investigate the mechanism behind the formation of these gaseous rings, but also to understand the dust dynamics and its emission in discs threaded by a large-scale magnetic field. To this end, we performed global magneto-hydrodynamics (MHD) axisymmetric simulations with ambipolar diffusion using a modified version of the PLUTO code. We explored different magnetisations with the midplane $beta$ parameter ranging from $10^5$ to $10^3$ and included dust grains -- treated in the fluid approximation -- ranging from $100 mu$m to 1 cm in size. We first show that the gaseous rings (associated with zonal flows) are tightly linked to the existence of MHD winds. Secondly, we find that millimetre-size dust is highly sedimented, with a typical scale height of 1 AU at $R=100$ AU for $beta=10^4$, compatible with recent ALMA observations. We also show that these grains concentrate into pressure maxima associated with zonal flows, leading to the formation of dusty rings. Using the radiative transfer code MCFOST, we computed the dust emission and make predictions on the ring-gap contrast and the spectral index that one might observe with interferometers like ALMA.
Rings and gaps have been observed in a wide range of protoplanetary discs, from young systems like HLTau to older discs like TW Hydra. Recent disc simulations have shown that magnetohydrodynamic (MHD) turbulence (in the ideal or non-ideal regime) can
We present 3D smoothed particle hydrodynamics simulations of protoplanetary discs undergoing a flyby by a stellar perturber on a parabolic orbit lying in a plane inclined relative to the disc mid-plane. We model the disc as a mixture of gas and dust,
Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs. Apart from facilitating gas accretion on to the central protostar, it must also impact on the process of planet formation: directly through fragmentation, and
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal
Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been