ﻻ يوجد ملخص باللغة العربية
Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs. Apart from facilitating gas accretion on to the central protostar, it must also impact on the process of planet formation: directly through fragmentation, and indirectly through the turbulent concentration of small solids. To understand the latter process, it is essential to determine the dust dynamics in such a turbulent flow. For that purpose, we conduct a series of 3D shearing box simulations of coupled gas and dust, including the gass self-gravity and scanning a range of Stokes numbers, from 0.001 to ~0.2. First, we show that the vertical settling of dust in the midplane is significantly impeded by gravitoturbulence, with the dust scale-height roughly 0.6 times the gas scale height for centimetre grains. This is a result of the strong vertical diffusion issuing from (a) small-scale inertial-wave turbulence feeding off the GI spiral waves and (b) the larger-scale vertical circulations that naturally accompany the spirals. Second, we show that at R=50 AU concentration events involving sub-metre particles and yielding order 1 dust to gas ratios are rare and last for less than an orbit. Moreover, dust concentration is less efficient in 3D than in 2D simulations. We conclude that GI is not especially prone to the turbulent accumulation of dust grains. Finally, the large dust scale-height measured in simulations could be, in the future, compared with that of edge-on discs seen by ALMA, thus aiding detection and characterisation of GI in real systems.
The streaming instability (SI) has been extensively studied in the linear and non-linear regimes as a mechanism to concentrate solids and trigger planetesimal formation in the midplane of protoplanetary discs. A related dust settling instability (DSI
Enhancing the local dust-to-gas ratio in protoplanetary discs is a necessary first step to planetesimal formation. In laminar discs, dust settling is an efficient mechanism to raise the dust-to-gas ratio at the disc midplane. However, turbulence, if
We present 3D smoothed particle hydrodynamics simulations of protoplanetary discs undergoing a flyby by a stellar perturber on a parabolic orbit lying in a plane inclined relative to the disc mid-plane. We model the disc as a mixture of gas and dust,
MHD turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE.
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele