ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust dynamics and vertical settling in gravitoturbulent protoplanetary discs

474   0   0.0 ( 0 )
 نشر من قبل Antoine Riols-Fonclare
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs. Apart from facilitating gas accretion on to the central protostar, it must also impact on the process of planet formation: directly through fragmentation, and indirectly through the turbulent concentration of small solids. To understand the latter process, it is essential to determine the dust dynamics in such a turbulent flow. For that purpose, we conduct a series of 3D shearing box simulations of coupled gas and dust, including the gass self-gravity and scanning a range of Stokes numbers, from 0.001 to ~0.2. First, we show that the vertical settling of dust in the midplane is significantly impeded by gravitoturbulence, with the dust scale-height roughly 0.6 times the gas scale height for centimetre grains. This is a result of the strong vertical diffusion issuing from (a) small-scale inertial-wave turbulence feeding off the GI spiral waves and (b) the larger-scale vertical circulations that naturally accompany the spirals. Second, we show that at R=50 AU concentration events involving sub-metre particles and yielding order 1 dust to gas ratios are rare and last for less than an orbit. Moreover, dust concentration is less efficient in 3D than in 2D simulations. We conclude that GI is not especially prone to the turbulent accumulation of dust grains. Finally, the large dust scale-height measured in simulations could be, in the future, compared with that of edge-on discs seen by ALMA, thus aiding detection and characterisation of GI in real systems.

قيم البحث

اقرأ أيضاً

The streaming instability (SI) has been extensively studied in the linear and non-linear regimes as a mechanism to concentrate solids and trigger planetesimal formation in the midplane of protoplanetary discs. A related dust settling instability (DSI ) applies to particles while settling towards the midplane. The DSI has previously been studied in the linear regime, with predictions that it could trigger particle clumping away from the midplane. This work presents a range of linear calculations and non-linear simulations, performed with FARGO3D, to assess conditions for DSI growth. We expand on previous linear analyses by including particle size distributions and performing a detailed study of the amount of background turbulence needed to stabilize the DSI. When including binned size distributions, the DSI often produces converged growth rates with fewer bins than the standard SI. With background turbulence, we find that the most favorable conditions for DSI growth are weak turbulence, characterized by $alpha lesssim 10^{-6}$ with intermediate-sized grains that settle from one gas scale-height. These conditions could arise during a sudden decrease in disc turbulence following an accretion outburst. Ignoring background turbulence, we performed a parameter survey of local 2D DSI simulations. Particle clumping was either weak or occurred slower than particles settle. Clumping was reduced by a factor of two in a comparison 3D simulation. Overall, our results strongly disfavor the hypothesis that the DSI significantly promotes planetesimal formation. Non-linear simulations of the DSI with different numerical methods could support or challenge these findings.
115 - Min-Kai Lin 2019
Enhancing the local dust-to-gas ratio in protoplanetary discs is a necessary first step to planetesimal formation. In laminar discs, dust settling is an efficient mechanism to raise the dust-to-gas ratio at the disc midplane. However, turbulence, if present, can stir and lift dust particles, which ultimately hinders planetesimal formation. In this work, we study dust settling in protoplanetary discs with hydrodynamic turbulence sustained by the vertical shear instability. We perform axisymmetric numerical simulations to investigate the effect of turbulence, particle size, and solid abundance or metallicity on dust settling. We highlight the positive role of drag forces exerted onto the gas by the dust for settling to overcome the vertical shear instability. In typical disc models we find particles with a Stokes number $sim 10^{-3}$ can sediment to $lesssim 10%$ of the gas scale-height, provided that $Sigma_mathrm{d}/Sigma_mathrm{g}gtrsim 0.02$-$0.05$, where $Sigma_mathrm{d,g}$ are the surface densities in dust and gas, respectively. This coincides with the metallicity condition for small particles to undergo clumping via the streaming instability. Super-solar metallicities, at least locally, are thus required for a self-consistent picture of planetesimal formation. Our results also imply that dust rings observed in protoplanetary discs should have smaller scale-heights than dust gaps, provided that the metallicity contrast between rings and gaps exceed the corresponding contrast in gas density.
We present 3D smoothed particle hydrodynamics simulations of protoplanetary discs undergoing a flyby by a stellar perturber on a parabolic orbit lying in a plane inclined relative to the disc mid-plane. We model the disc as a mixture of gas and dust, with grains ranging from 1 {mu}m to 10 cm in size. Exploring different orbital inclinations, periastron distances and mass ratios, we investigate the disc dynamical response during and after the flyby. We find that flybys induce evolving spiral structure in both gas and dust which can persist for thousands of years after periastron. Gas and dust structures induced by the flyby differ because of drag-induced effects on the dust grains. Variations in the accretion rate by up to an order of magnitude occur over a time-scale of order 10 years or less, inducing FU Orionis-like outbursts. The remnant discs are truncated and warped. The dust disc is left more compact than the gas disc, both because of disc truncation and accelerated radial drift of grains induced by the flyby.
183 - A. Riols , G. Lesur 2018
MHD turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into radial structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. The strong sedimentation of millimetre dust measured in T-Tauri discs is also in contradiction with predictions based on ideal MRI turbulence. In this paper, we study the effects of non-ideal MHD and winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (>1 AU). For that, we perform numerical MHD simulations in the stratified shearing box, using the PLUTO code. Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ~0.4 AU at 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within pressure maxima induced by ambipolar diffusion, leading to the formation of dust rings. For micrometer grains, dust and gas scaleheights are similar. In this regime, the settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Overall, our results show that non-ideal MHD effects and their related winds play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to substantial accretion efficiency, non-ideal effects also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates.
430 - P. Woitke , M. Min , C. Pinte 2015
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavele ngths. We propose new standard dust opacities for disk models, we present a simplified treatment of PAHs sufficient to reproduce the PAH emission features, and we suggest using a simple treatment of dust settling. We roughly adjust parameters to obtain a model that predicts typical Class II T Tauri star continuum and line observations. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63um, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties (large grains) often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine some key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا