ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Gamma-ray Emission from the G25.0+0.0 Region: A Star Forming Region Powered by the Newly Found OB Association?

63   0   0.0 ( 0 )
 نشر من قبل Junichiro Katsuta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a study of extended $gamma$-ray emission with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, which is likely to be the second case of a $gamma$-ray detection from a star-forming region (SFR) in our Galaxy. The LAT source is located in the G25 region, $1.7^{circ} times 2.1^{circ}$ around $(l, b) = (25.0^{circ}, 0.0^{circ})$. The $gamma$-ray emission is found to be composed of two extended sources and one point-like source. The extended sources have a similar sizes of about $1.4^{circ} times 0.6^{circ}$. An $sim 0.4^{circ}$ diameter sub-region of one has a photon index of $Gamma = 1.53 pm 0.15$; and is spatially coincident with HESS J1837$-$069, likely a pulsar wind nebula. The other parts of the extended sources have a photon index of $Gamma = 2.1 pm 0.2$ without significant spectral curvature. Given their spatial and spectral properties, they have no clear associations with sources at other wavelengths. Their $gamma$-ray properties are similar to those of the Cygnus cocoon SFR, the only firmly established $gamma$-ray detection of an SFR in the Galaxy. Indeed, we find bubble-like structures of atomic and molecular gas in G25, which may be created by a putative OB association/cluster. The $gamma$-ray emitting regions appear confined in the bubble-like structure; similar properties are also found in the Cygnus cocoon. In addition, using observations with the the XMM-Newton we find a candidate young massive OB association/cluster G25.18+0.26 in the G25 region. We propose that the extended $gamma$-ray emission in G25 is associated with an SFR driven by G25.18+0.26. Based on this scenario, we discuss possible acceleration processes in the SFR and compare them with the Cygnus cocoon.



قيم البحث

اقرأ أيضاً

We report the detection of high-energy gamma-ray signal towards the young star-forming region, W40. Using 10-year Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended gamma-ray excess region with a significance of abo ut 18sigma. The radiation has a spectrum with a photon index of 2.49 +/- 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the gamma-ray emission. The total cosmic-ray (CR) proton energy in the gamma-ray production region is estimated to be the order of 10^47 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of gamma-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the gamma-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding cocoons.
Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy e mitters (pulsars, blazars, supernova remnants, etc.) theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FGL J0607.5-0618c detection with improved confidence over the Fermi two-year catalog. We find that a combined effect of the multiple young stellar objects in Monoceros R2 is a viable picture for the nature of the source.
220 - S. Ohm , J.A. Hinton , R. White 2013
Westerlund 1 (Wd 1) is the most massive stellar cluster in the Galaxy and associated with an extended region of TeV emission. Here we report the results of a search for GeV gamma-ray emission in this region. The analysis is based on ~4.5 years of Fer mi-LAT data and reveals significantly extended emission which we model as a Gaussian, resulting in a best-fit sigma of sigma_S = (0.475 +/- 0.05) deg and an offset from Wd 1 of ~1 deg. A partial overlap of the GeV emission with the TeV signal as reported by H.E.S.S. is found. We investigate the spectral and morphological characteristics of the gamma-ray emission and discuss its origin in the context of two distinct scenarios. Acceleration of electrons in a Pulsar Wind Nebula provides a reasonably natural interpretation of the GeV emission, but leaves the TeV emission unexplained. A scenario in which protons are accelerated in or near Wd 1 in supernova explosion(s) and are diffusing away and interacting with molecular material, seems consistent with the observed GeV and TeV emission, but requires a very high energy input in protons, ~10^51 erg, and rather slow diffusion. Observations of Wd 1 with a future gamma-ray detector such as CTA provide a very promising route to fully resolve the origin of the TeV and GeV emission in Wd 1 and provide a deeper understanding of the high-energy (HE) astrophysics of massive stellar clusters.
119 - M. Tavani , S. Sabatini , E. Pian 2009
We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (Eta Car) during the period 2007 July to 2009 January. We detect a gamma-ray source (1AGL J1043-5931) consistent with the position of Eta Car. If 1AGL J1043-5931 is associated with the Eta Car system our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the pre-periastron period 2007 July to 2008 October is F = (37 +/- 5) x 10-8 ph cm-2 s-1 corresponding to an average gamma-ray luminosity of L = 3.4 x 10^34 erg s-1 for a distance of 2.3 kpc. We also report a 2-day gamma-ray flaring episode of 1AGL J1043-5931 on 2008 Oct. 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.
The Cygnus arm of our galaxy is a source-rich and complex region hosting multiple gamma-ray source types such as pulsar wind nebulae (PWN), supernova remnants, binary systems, and star clusters. The High Altitude Water Cherenkov (HAWC) observatory ha s been collecting data continuously since 2015 and has reported five sources within the Cygnus region. Several other instruments have also observed gamma-ray sources in this region. For instance, Fermi-LAT found gamma-ray emission at GeV energies due to a Cocoon of freshly accelerated cosmic rays, which is co-located with a known PWN TeV 2032+4130 seen by several TeV gamma-ray observatories. TeV J2032+4130 is likely powered by the pulsar PSR J2032+4127 based on the multi-wavelength observation and asymmetric morphology reported by VERITAS. The study of HAWC data will provide more information regarding the morphology, emission origin, and the correlation with the GeV emission. This presentation will discuss the analysis of data collected with the HAWC instrument and the Fermi-LAT and the results obtained to provide a deeper understanding of the Cygnus Cocoon across five decades of energy range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا