ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytically solvable quasi-one-dimensional Kronig-Penney model

131   0   0.0 ( 0 )
 نشر من قبل Marta Sroczynska
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marta Sroczynska




اسأل ChatGPT حول البحث

We generalize the textbook Kronig-Penney model to realistic conditions for a quantum-particle moving in the quasi-one-dimensional (quasi-1D) waveguide, where motion in the transverse direction is confined by a harmonic trapping potential. Along the waveguide, the particle scatters on an infinite array of regularized delta potentials. Our starting point is the Lippmann-Schwinger equation, which for quasi-1D geometry can be solved exactly, based on the analytical formula for the quasi-1D Greens function. We study the properties of eigen-energies as a function of particle quasi-momentum, which form band structure, as in standard Kronig-Penney model. We test our model by comparing it to the numerical calculations for an atom scattering on an infinite chain of ions in quasi-1D geometry. The agreement is fairly good and can be further improved by introducing energy-dependent scattering length in the regularized delta potential. The energy spectrum exhibits the presence of multiple overlapping bands resulting from excitations in the transverse direction. At large lattice constants, our model reduces to standard Kronig-Penney result with one-dimensional coupling constant for quasi-1D scattering, exhibiting confinement-induced resonances. In the opposite limit, when lattice constant becomes comparable to harmonic oscillator length of the transverse potential, we calculate the correction to the quasi-1D coupling constant due to the quantum interference between scatterers. Finally, we calculate the effective mass for the lowest band and show that it becomes negative for large and positive scattering lengths.



قيم البحث

اقرأ أيضاً

We study the properties of a quantum particle interacting with a one dimensional structure of equidistant scattering centres. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and odd scattering waves within the pseudopotential approximation. This generalises the well-known solid-state physics text-book result known as the Kronig-Penney model. Our generalised model can be used to describe systems such as degenerate Fermi gases interacting with ions or with another neutral atomic species confined in an optical lattice, thus enabling the investigation of polaron or Kondo physics within a simple formalism. We focus our attention on the specific atom-ion system and compare our findings with quantum defect theory. Excellent agreement is obtained within the regime of validity of the pseudopotential approximation. This enables us to derive a Bose-Hubbard Hamiltonian for a degenerate quantum Bose gas in a linear chain of ions.
We study the effects of random positional disorder in the transmission of waves in a 1D Kronig-Penny model. For weak disorder we derive an analytical expression for the localization length and relate it to the transmission coefficient for finite samp les. The obtained results describe very well the experimental frequency dependence of the transmission in a microwave realization of the model. Our results can be applied both to photonic crystals and semiconductor super lattices.
The paradigm of electrons interacting with a periodic lattice potential is central to solid-state physics. Semiconductor heterostructures and ultracold neutral atomic lattices capture many of the essential properties of 1D electronic systems. However , fully one-dimensional superlattices are highly challenging to fabricate in the solid state due to the inherently small length scales involved. Conductive atomic-force microscope (c-AFM) lithography has recently been demonstrated to create ballistic few-mode electron waveguides with highly quantized conductance and strongly attractive electron-electron interactions. Here we show that artificial Kronig-Penney-like superlattice potentials can be imposed on such waveguides, introducing a new superlattice spacing that can be made comparable to the mean separation between electrons. The imposed superlattice potential fractures the electronic subbands into a manifold of new subbands with magnetically-tunable fractional conductance (in units of $e^2/h$). The lowest $G=2e^2/h$ plateau, associated with ballistic transport of spin-singlet electron pairs, is stable against de-pairing up to the highest magnetic fields explored ($|B|=16$ T). A 1D model of the system suggests that an engineered spin-orbit interaction in the superlattice contributes to the enhanced pairing observed in the devices. These findings represent an important advance in the ability to design new families of quantum materials with emergent properties, and mark a milestone in the development of a solid-state 1D quantum simulation platform.
Exact solutions of the time-dependent Schrodinger equation for a quantum oscillator subject to periodical frequency delta-kicks are obtained. We show that the oscillator occurs in the squeezed state and calculate the corresponding squeezing coefficie nts and the energy increase rate in terms of Chebyshev polynomials.
66 - Joerg Schmiedmayer 2018
In this chapter we will present the one-dimensional (1d) quantum degenerate Bose gas (1d superfluid) as a testbed to experimentally illustrate some of the key aspects of quantum thermodynamics. Hard-core bosons in one-dimension are described by the i ntegrable Lieb-Lininger model. Realistic systems, as they can be implemented, are only approximately integrable, and let us investigate the cross over to thermalisation. They show such fundamental properties as pre-thermalisation, general Gibbs ensembles and light-cone like spreading of de-coherence. On the other hand they are complex enough to illustrate that our limited ability to measure only (local) few-body observables determines the relevant description of the many-body system and its physics. One consequence is the observation of quantum recurrences in systems with thousand of interacting particles. The relaxation observed in 1D superfluids is universal for a large class of many-body systems, those where the relevant physics can be described by a set of long lived collective modes. The time window where the close to integrable dynamics can be observed is given by the lifetime of the quasi-particles associated with the collective modes. Based on these observations one can view (in a quantum field theory sense) a many-body quantum system at T=0 as vacuum and its excitations as the system to experiment with. This viewpoint leads to a new way to build thermal machines from the quasi-particles in 1D superfluids. We will give examples of how to realise these systems and point to a few interesting questions that might be addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا