Exact solutions of the time-dependent Schrodinger equation for a quantum oscillator subject to periodical frequency delta-kicks are obtained. We show that the oscillator occurs in the squeezed state and calculate the corresponding squeezing coefficients and the energy increase rate in terms of Chebyshev polynomials.
We generalize the textbook Kronig-Penney model to realistic conditions for a quantum-particle moving in the quasi-one-dimensional (quasi-1D) waveguide, where motion in the transverse direction is confined by a harmonic trapping potential. Along the w
aveguide, the particle scatters on an infinite array of regularized delta potentials. Our starting point is the Lippmann-Schwinger equation, which for quasi-1D geometry can be solved exactly, based on the analytical formula for the quasi-1D Greens function. We study the properties of eigen-energies as a function of particle quasi-momentum, which form band structure, as in standard Kronig-Penney model. We test our model by comparing it to the numerical calculations for an atom scattering on an infinite chain of ions in quasi-1D geometry. The agreement is fairly good and can be further improved by introducing energy-dependent scattering length in the regularized delta potential. The energy spectrum exhibits the presence of multiple overlapping bands resulting from excitations in the transverse direction. At large lattice constants, our model reduces to standard Kronig-Penney result with one-dimensional coupling constant for quasi-1D scattering, exhibiting confinement-induced resonances. In the opposite limit, when lattice constant becomes comparable to harmonic oscillator length of the transverse potential, we calculate the correction to the quasi-1D coupling constant due to the quantum interference between scatterers. Finally, we calculate the effective mass for the lowest band and show that it becomes negative for large and positive scattering lengths.
We study the properties of a quantum particle interacting with a one dimensional structure of equidistant scattering centres. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and
odd scattering waves within the pseudopotential approximation. This generalises the well-known solid-state physics text-book result known as the Kronig-Penney model. Our generalised model can be used to describe systems such as degenerate Fermi gases interacting with ions or with another neutral atomic species confined in an optical lattice, thus enabling the investigation of polaron or Kondo physics within a simple formalism. We focus our attention on the specific atom-ion system and compare our findings with quantum defect theory. Excellent agreement is obtained within the regime of validity of the pseudopotential approximation. This enables us to derive a Bose-Hubbard Hamiltonian for a degenerate quantum Bose gas in a linear chain of ions.
We study the effects of random positional disorder in the transmission of waves in a 1D Kronig-Penny model. For weak disorder we derive an analytical expression for the localization length and relate it to the transmission coefficient for finite samp
les. The obtained results describe very well the experimental frequency dependence of the transmission in a microwave realization of the model. Our results can be applied both to photonic crystals and semiconductor super lattices.
Uncertainties $(Delta x)^2$ and $(Delta p)^2$ are analytically derived in an $N$-coupled harmonic oscillator system when spring and coupling constants are arbitrarily time-dependent and each oscillator is in an arbitrary excited state. When $N = 2$,
those uncertainties are shown as just arithmetic average of uncertainties of two single harmonic oscillators. We call this property as sum rule of quantum uncertainty. However, this arithmetic average property is not generally maintained when $N geq 3$, but it is recovered in $N$-coupled oscillator systems if and only if $(N-1)$ quantum numbers are equal. The generalization of our results to a more general quantum system is briefly discussed.
We consider a harmonic oscillator (HO) with a time dependent frequency which undergoes two successive abrupt changes. By assumption, the HO starts in its fundamental state with frequency omega_{0}, then, at t = 0, its frequency suddenly increases to
omega_{1} and, after a finite time interval tau, it comes back to its original value omega_{0}. Contrary to what one could naively think, this problem is a quite non-trivial one. Using algebraic methods we obtain its exact analytical solution and show that at any time t > 0 the HO is in a squeezed state. We compute explicitly the corresponding squeezing parameter (SP) relative to the initial state at an arbitrary instant and show that, surprisingly, it exhibits oscillations after the first frequency jump (from omega_{0} to omega_{1}), remaining constant after the second jump (from omega_{1} back to omega_{0}). We also compute the time evolution of the variance of a quadrature. Last, but not least, we calculate the vacuum (fundamental state) persistence probability amplitude of the HO, as well as its transition probability amplitude for any excited state.