ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly robust treatment effect estimation with missing attributes

93   0   0.0 ( 0 )
 نشر من قبل Imke Mayer
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Missing attributes are ubiquitous in causal inference, as they are in most applied statistical work. In this paper, we consider various sets of assumptions under which causal inference is possible despite missing attributes and discuss corresponding approaches to average treatment effect estimation, including generalized propensity score methods and multiple imputation. Across an extensive simulation study, we show that no single method systematically out-performs others. We find, however, that doubly robust modifications of standard methods for average treatment effect estimation with missing data repeatedly perform better than their non-doubly robust baselines; for example, doubly robust generalized propensity score methods beat inverse-weighting with the generalized propensity score. This finding is reinforced in an analysis of an observations study on the effect on mortality of tranexamic acid administration among patients with traumatic brain injury in the context of critical care management. Here, doubly robust estimators recover confidence intervals that are consistent with evidence from randomized trials, whereas non-doubly robust estimators do not.



قيم البحث

اقرأ أيضاً

Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) metho dology under the assumption that confounders are missing at random. Their approach considers a union of models in which any submodel has a parametric component while the remaining models are unrestricted. We show that while their estimating function is MR in theory, the possibility for multiply robust inference is complicated by the fact that parametric models for different components of the union model are not variation independent and therefore the MR property is unlikely to hold in practice. To address this, we propose an alternative transparent parametrization of the likelihood function, which makes explicit the model dependencies between various nuisance functions needed to evaluate the MR efficient score. The proposed method is genuinely doubly-robust (DR) in that it is consistent and asymptotic normal if one of two sets of modeling assumptions holds. We evaluate the performance and doubly robust property of the DR method via a simulation study.
261 - Keli Guo 2020
The research described herewith is to re-visit the classical doubly robust estimation of average treatment effect by conducting a systematic study on the comparisons, in the sense of asymptotic efficiency, among all possible combinations of the estim ated propensity score and outcome regression. To this end, we consider all nine combinations under, respectively, parametric, nonparametric and semiparametric structures. The comparisons provide useful information on when and how to efficiently utilize the model structures in practice. Further, when there is model-misspecification, either propensity score or outcome regression, we also give the corresponding comparisons. Three phenomena are observed. Firstly, when all models are correctly specified, any combination can achieve the same semiparametric efficiency bound, which coincides with the existing results of some combinations. Secondly, when the propensity score is correctly modeled and estimated, but the outcome regression is misspecified parametrically or semiparametrically, the asymptotic variance is always larger than or equal to the semiparametric efficiency bound. Thirdly, in contrast, when the propensity score is misspecified parametrically or semiparametrically, while the outcome regression is correctly modeled and estimated, the asymptotic variance is not necessarily larger than the semiparametric efficiency bound. In some cases, the super-efficiency phenomenon occurs. We also conduct a small numerical study.
We consider the estimation of the average treatment effect in the treated as a function of baseline covariates, where there is a valid (conditional) instrument. We describe two doubly robust (DR) estimators: a locally efficient g-estimator, and a t argeted minimum loss-based estimator (TMLE). These two DR estimators can be viewed as generalisations of the two-stage least squares (TSLS) method to semi-parametric models that make weaker assumptions. We exploit recent theoretical results that extend to the g-estimator the use of data-adaptive fits for the nuisance parameters. A simulation study is used to compare standard TSLS with the two DR estimators finite-sample performance, (1) when fitted using parametric nuisance models, and (2) using data-adaptive nuisance fits, obtained from the Super Learner, an ensemble machine learning method. Data-adaptive DR estimators have lower bias and improved coverage, when compared to incorrectly specified parametric DR estimators and TSLS. When the parametric model for the treatment effect curve is correctly specified, the g-estimator outperforms all others, but when this model is misspecified, TMLE performs best, while TSLS can result in large biases and zero coverage. Finally, we illustrate the methods by reanalysing the COPERS (COping with persistent Pain, Effectiveness Research in Self-management) trial to make inference about the causal effect of treatment actually received, and the extent to which this is modified by depression at baseline.
129 - Chuyun Ye , Keli Guo , Lixing Zhu 2020
In this paper, we apply doubly robust approach to estimate, when some covariates are given, the conditional average treatment effect under parametric, semiparametric and nonparametric structure of the nuisance propensity score and outcome regression models. We then conduct a systematic study on the asymptotic distributions of nine estimators with different combinations of estimated propensity score and outcome regressions. The study covers the asymptotic properties with all models correctly specified; with either propensity score or outcome regressions locally / globally misspecified; and with all models locally / globally misspecified. The asymptotic variances are compared and the asymptotic bias correction under model-misspecification is discussed. The phenomenon that the asymptotic variance, with model-misspecification, could sometimes be even smaller than that with all models correctly specified is explored. We also conduct a numerical study to examine the theoretical results.
Multilevel regression and poststratification (MRP) is a flexible modeling technique that has been used in a broad range of small-area estimation problems. Traditionally, MRP studies have been focused on non-causal settings, where estimating a single population value using a nonrepresentative sample was of primary interest. In this manuscript, MRP-style estimators will be evaluated in an experimental causal inference setting. We simulate a large-scale randomized control trial with a stratified cluster sampling design, and compare traditional and nonparametric treatment effect estimation methods with MRP methodology. Using MRP-style estimators, treatment effect estimates for areas as small as 1.3$%$ of the population have lower bias and variance than standard causal inference methods, even in the presence of treatment effect heterogeneity. The design of our simulation studies also requires us to build upon a MRP variant that allows for non-census covariates to be incorporated into poststratification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا