ﻻ يوجد ملخص باللغة العربية
We present Korali, an open-source framework for large-scale Bayesian uncertainty quantification and stochastic optimization. The framework relies on non-intrusive sampling of complex multiphysics models and enables their exploitation for optimization and decision-making. In addition, its distributed sampling engine makes efficient use of massively-parallel architectures while introducing novel fault tolerance and load balancing mechanisms. We demonstrate these features by interfacing Korali with existing high-performance software such as Aphros, Lammps (CPU-based), and Mirheo (GPU-based) and show efficient scaling for up to 512 nodes of the CSCS Piz Daint supercomputer. Finally, we present benchmarks demonstrating that Korali outperforms related state-of-the-art software frameworks.
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assump
This work affords new insights into Bayesian CART in the context of structured wavelet shrinkage. The main thrust is to develop a formal inferential framework for Bayesian tree-based regression. We reframe Bayesian CART as a g-type prior which depart
In this paper, a new stochastic framework for parameter estimation and uncertainty quantification in colon cancer-induced angiogenesis, using patient data, is presented. The dynamics of colon cancer is given by a stochastic process that captures the
Bayesian optimization (BO) is a flexible and powerful framework that is suitable for computationally expensive simulation-based applications and guarantees statistical convergence to the global optimum. While remaining as one of the most popular opti
Within a Bayesian statistical framework using the standard Skyrme-Hartree-Fcok model, the maximum a posteriori (MAP) values and uncertainties of nuclear matter incompressibility and isovector interaction parameters are inferred from the experimental