ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooper pair trajectories in superconducting slab at self-field conditions

91   0   0.0 ( 0 )
 نشر من قبل Evgeny F. Talantsev
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dissipative-free electric current flow is one of the most fascinating and practically important property of superconductors. Theoretical consideration of the charge carriers flow in infinitely long rectangular slab of superconductor in the absence of external magnetic field (so called, self-field) is based on an assumption that the charge carriers have rectilinear trajectories in the direction of the current flow whereas the current density and magnetic flux density are decaying towards superconducting slab with London penetration depth as characteristic length. Here, we calculate charge particle trajectories (as single electron/hole, as Cooper pair) at self-field conditions and find that charge carriers do not follow intuitive rectilinear trajectories along the slab surface, but instead ones have meander shape trajectories which cross the whole thickness of the slab. Moreover, if the particle velocity is below some value, the charge moves in opposite direction to nominal current flow. This disturbance of the canonical magnetic flux density distribution and backward movement of Cooper pairs can be entire mechanism for power dissipation in superconductors.



قيم البحث

اقرأ أيضاً

We conducted a systematic study of the disorder dependence of the termination of superconductivity, at high magnetic fields (B), of amorphous indium oxide films. Our lower disorder films show conventional behavior where superconductivity is terminate d with a transition to a metallic state at a well-defined critical field, Bc2. Our higher disorder samples undergo a B-induced transition into a strongly insulating state, which terminates at higher Bs forming an insulating peak. We demonstrate that the B terminating this peak coincides with Bc2 of the lower disorder samples. Additionally we show that, beyond this field, these samples enter a different insulating state in which the magnetic field dependence of the resistance is weak. These results provide crucial evidence for the importance of Cooper-pairing in the insulating peak regime.
We investigated the Abrikosov vortex lattice (VL) of a pure Niobium single crystal with the muon spin rotation (mu SR) technique. Analysis of the mu SR data in the framework of the BCS-Gorkov theory allowed us to determine microscopic parameters and the limitations of the theory. With decreasing temperature the field variation around the vortex cores deviates substantially from the predictions of the Ginzburg-Landau theory and adopts a pronounced conical shape. This is evidence of partial diffraction of Cooper pairs on the VL predicted by Delrieu for clean superconductors.
We investigate the stability of spatially uniform solutions for the collisionless dynamics of a fermionic superfluid. We demonstrate that, if the system size is larger than the superfluid coherence length, the solution characterized by a periodic in time order parameter is unstable with respect to spatial fluctuations. The instability is due to the parametric excitations of pairing modes with opposite momenta. The growth of spatial modulations is suppressed by nonlinear effects resulting in a state characterized by a random superposition of wave packets of the superfluid order parameter. We suggest that this state can be probed by spectroscopic noise measurements.
This paper is devoted to an analysis of the experiment by Nakamura {it et al.} (Nature {bf 398}, 786 (1999)) on the quantum state control in Josephson junctions devices. By considering the relevant processes involved in the detection of the charge st ate of the box and a realistic description of the gate pulse we are able to analyze some aspects of the experiment (like the amplitude of the measurement current) in a quantitative way.
The advent of quantum optical techniques based on superconducting circuits has opened new regimes in the study of the non-linear interaction of light with matter. Of particular interest has been the creation of non-classical states of light, which ar e essential for continuous-variable quantum information processing, and could enable quantum-enhanced measurement sensitivity. Here we demonstrate a device consisting of a superconducting artificial atom, the Cooper pair transistor, embedded in a superconducting microwave cavity that may offer a path toward simple, continual production of non-classical photons. By applying a dc voltage to the atom, we use the ac Josephson effect to inject photons into the cavity. The backaction of the photons on single-Cooper-pair tunneling events results in a new regime of simultaneous quantum coherent transport of Cooper pairs and microwave photons. This single-pair Josephson laser offers great potential for the production of amplitude-squeezed photon states and a rich environment for the study of the quantum dynamics of nonlinear systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا